
I N T E R A C T I V E V I S U A L
PA R A M E T E R - S PA C E A N D C O R R E L AT I O N A N A LY S I S

O F S PAT I O - T E M P O R A L S I M U L AT I O N E N S E M B L E S

marina evers

I N F O R M AT I K

Dissertationsthema

Interactive Visual
Parameter-Space and Correlation Analysis
of Spatio-Temporal Simulation Ensembles

Inaugural-Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)

der Naturwissenschaften im Fachbereich
Mathematik und Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät
der Westfälischen Wilhelms-Universität Münster

vorgelegt von

marina evers

aus Lingen (Ems)

- 2023 -

dekan: Prof. Dr. Arthur Bartels

erster gutachter: Prof. Dr.-Ing. Lars Linsen

zweiter gutachter: Prof. Dr. Rüdiger Westermann

tag der mündlichen prüfung: .

tag der promotion: .

iv

A B S T R A C T

Numerical simulations are commonly used to model spatio-temporal
phenomena across different domains, including physics, climate science,
and medicine. The individual simulation results often vary over space
and time but might also contain different fields. Simulations are run
several times with different input parameters and initial conditions to
capture their influence. The resulting set of simulation runs is called
a simulation ensemble. Such simulation ensembles capture the uncer-
tainty induced by the initial conditions or unknown parameter settings
but can also be used to investigate how the parameters influence the sim-
ulation outcome. However, simulation ensembles contain large amounts
of complex data, which makes them challenging to analyze. To obtain
a comprehensive understanding of the data, visual analysis approaches
combine automatic methods with the expert knowledge of the scientist.

This thesis presents interactive visual approaches targeting different
facets of the analysis of simulation ensembles. Applications to simula-
tion ensembles from the domains of physics, climate science, and med-
icine as well as feedback from experts in the respective domains show
the utility of our approaches.

The first part of the thesis concentrates on exploring the parameter
space to understand how different parameters influence the simulation
output and identify the most important ones. An interactive method for
semi-automatically partitioning the multi-dimensional parameter space
into regions with similar simulation outcomes is proposed. This multi-
dimensional partitioning can be investigated in a distortion-free visual-
ization that allows for seeing the partitions’ extent and obtaining a geo-
metrical understanding. Furthermore, we also propose a 2D embedding
that provides an overview of the partitioning and preserves its topol-
ogy, the partitions’ sizes, and boundaries. Interactive measure definitions
support a flexible, domain-specific analysis of the parameter space. Co-
herent topological landscapes allow for understanding the topological
variations in the dependency of the input parameters. While these ap-
proaches focus on qualitative parameter-space analysis, we introduce an
interactive visual approach for analyzing the quantitative sensitivity in
different spatial regions.

The second part of the thesis targets the analysis of correlations be-
tween different spatial regions to study, in particular, long-range phe-

v

nomena in climate science like the El Niño phenomenon. Based on a
summary visualization of the correlations covering the entire simulation
ensemble, uncertainty-aware visual analysis approaches allow for inves-
tigating the correlations on different levels of detail.

vi

Z U S A M M E N FA S S U N G

Numerische Simulationen werden genutzt, um räumlich-zeitliche Phä-
nomene in wissenschaftlichen Bereichen wie Physik, Klimawissenschaf-
ten und Medizin zu modellieren. Die einzelnen Simulationsläufe vari-
ieren üblicherweise in Raum und Zeit, können aber auch mehrere Felder
beinhalten. Um den Einfluss der Eingabeparameter und der Startbedin-
gungen zu ermitteln, werden die Simulationen mehrere Male ausgeführt.
Daraus ergibt sich eine Menge an Simulationsläufen, die auch als Simu-
lationsensemble bezeichnet wird. Solche Simulationsensembles erfassen
die Unsicherheit, die aus unbekannten Anfangsbedingungen oder Pa-
rametern stammt. Simulationsensembles beinhalten große Mengen kom-
plexer Daten, die zu Herausforderungen in der Analyse führen. Um ein
umfassendes Verständnis der Daten zu erhalten, kombinieren Ansätze
der visuellen Analytik automatische Methodiken mit dem Expertenwis-
sen der Wissenschaftler.

Diese Arbeit präsentiert interaktive visuelle Ansätze, die auf die Ana-
lyse der unterschiedlichen Facetten von Simulationsensembles abzielen.
Die Anwendbarkeit der Techniken wird durch Beispiele aus der Physik,
der Klimaforschung und der Medizin gezeigt sowie durch die Rückmel-
dung von Experten.

Der erste Teil der Arbeit konzentriert sich auf die Untersuchung des
Parameterraums, um den Einfluss der Parameter auf das Simulation-
sergebnis zu verstehen und die wichtigsten Parameter zu identifizieren.
Eine interaktive Methode zur halbautomatischen Partitionierung von
mehrdimensionalen Parameterräumen wird vorgestellt, wobei die Par-
titionen basierend auf Ähnlichkeiten im Simulationsergebnis geformt
werden. Die Partitionierungen können in einer verzerrungsfreien Visu-
alisierung dargestellt werden, die ein Ablesen der Ausdehnung der Seg-
mente und das Bilden eines geometrischen Verständnisses erlaubt. Au-
ßerdem schlagen wir eine 2D Einbettung vor, die einen Überblick über
die Partitionierung vermittelt und sowohl die Topologie und die Größen
der Partitionen als auch die ihrer Grenzflächen berücksichtigt. Die inter-
aktive Definition abgeleiteter Größen erlaubt eine flexible, anwendungs-
spezifische Analyse des Parameterraums. Kohärente topologische Land-
schaften vermitteln ein Verständnis über die topologische Variation in
Abhängigkeit der Eingabeparameter. Während sich diese Ansätze auf
eine qualitative Parameterraumanalyse konzentrieren, addressiert ein in-

vii

teraktiver visueller Ansatz die Analyse der quantitativen Parametersen-
sitivität in unterschiedlichen räumlichen Regionen.

Im zweiten Teil der Arbeit werden Korrelationen zwischen unterschied-
lichen räumlichen Regionen untersucht, was die Analyse langreichwei-
tiger Phänomene aus der Klimaforschung, wie zum Beispiel des El Niño
Phänomens, ermöglicht. Basierend auf einer Überblickvisualisierung, die
die Korrelationen der kompletten Simulationsensembles darstellt, wer-
den visuelle Analyseansätze unter Berücksichtigung der Unsicherheit
vorgestellt. Diese erlauben es, die Korrelation auf unterschiedlichen De-
tailgraden zu untersuchen.

viii

P U B L I C AT I O N S

Parts of the content of this thesis are published or will be published in
the following manuscripts:

• M. Evers and L. Linsen, 2D Embeddings of Multi-dimensional Par-
titionings, to be submitted

• M. Evers, S. Leistikow H. Rave, and L. Linsen, Interactive Visual
Analysis of Spatial Sensitivities, to be submitted

• M. Evers, M. Böttinger and L. Linsen, Interactive Visual Analysis
of Regional Time Series Correlation in Multi-field Climate Ensem-
bles, Workshop on Visualisation in Environmental Sciences (EnvirVis),
69-76 (2023)

• M. Evers, R. Wittkowski and L. Linsen, ASEVis: Visual Exploration
of Active System Ensembles to Define Characteristic Measures,
2022 IEEE Visualization and Visual Analytics (VIS), 150-154 (2022)

• M. Evers and L. Linsen, Multi-dimensional Parameter-space Par-
titioning of Spatio-temporal Simulation Ensembles, Computers &
Graphics 104: 140-151 (2022)

• M. Evers, M. Herick, V. Molchanov and L. Linsen, Coherent Topo-
logical Landscapes for Simulation Ensembles, In Computer Vision,
Imaging and Computer Graphics Theory and Applications, edited by
Bouatouch K. et al., 223-237 (2022)

• M. Evers*, K. Huesmann* and L. Linsen, Uncertainty-aware Visu-
alization of Regional Time Series Correlation in Spatio-temporal
Ensembles, Computer Graphics Forum 40, No. 3: 519-530 (2021)
(* The authors contributed equally.)

The following work is not part of the thesis but was developed during
the same period:

• M. Evers, A. Derstroff, S. Leistikow, T. Schneider, L. Mallepree,
J. Stambke, M. Leisgang, S. Sprafke, M. Schuhl, N. Krefft, F. Droese
and L. Linsen, Visual Analytics of Soccer Player Performance Us-
ing Objective Ratings, under review

ix

https://doi.org/10.2312/envirvis.20231108
https://doi.org/10.2312/envirvis.20231108
https://doi.org/10.2312/envirvis.20231108
https://doi.org/10.1109/VIS54862.2022.00039
https://doi.org/10.1109/VIS54862.2022.00039
https://dx.doi.org/10.1016/j.cag.2022.04.005
https://dx.doi.org/10.1016/j.cag.2022.04.005
https://doi.org/10.1007/978-3-030-94893-1_10
https://doi.org/10.1007/978-3-030-94893-1_10
https://dx.doi.org/10.1111/cgf.14326
https://dx.doi.org/10.1111/cgf.14326
https://dx.doi.org/10.1111/cgf.14326

• G. Borrelli, L. Hagemann, J. Steinkühler, A. Derstroff, M. Evers,
K. Huesmann, S. Leistikow, H. Rave, R. Sabbagh Gol and L. Lin-
sen, How Wildfires Spread and Why: Visual Multi-field Analysis
of Vorticity-driven Lateral Spread Ensembles, Proceedings of IEEE
VIS 2022 (SciVis Contest) (2022), Winning Entry

• K. Heimes, M. Evers, T. Gerrits, S. Gyawali, D. Sinden, T. Preusser
and L. Linsen, Studying the effect of tissue properties on radiofre-
quency ablation by visual simulation ensemble analysis, Eurograph-
ics Workshop on Visual Computing for Biology and Medicine (2022),
Honorable Mention

• M. Evers and R. Wittkowski, A colloidal time crystal and its tem-
pomechanical properties, arXiv preprint arXiv:2112.04498 (2021), un-
der review

• M. Evers, S. Leistikow, A. Derstroff, T. Gerrits, K. Huesmann, J. Hol-
lenbeck, J. Seljami and L. Linsen, Visual Analysis of Spatio-temporal
Features in Multi-field Earth’s Mantle Convection Simulations, Pro-
ceedings of IEEE VIS 2021 (SciVis Contest) (2021)

x

https://doi.org/10.2312/vcbm.20221187
https://doi.org/10.2312/vcbm.20221187
https://arxiv.org/abs/2112.04498
https://arxiv.org/abs/2112.04498

A C K N O W L E D G E M E N T S

I want to thank everyone who supported me during the last four years,
without whom this work would not have been possible.

First and foremost, I want to thank my supervisor Lars Linsen for his
continuous support throughout the last years and from whom I learned
a lot. I am very grateful that he provided me with opportunities to follow
my research interests and had an open door to answer my questions.

I also want to thank all my colleagues and co-authors for many in-
teresting and inspiring discussions. I want to especially thank Karim
Huesmann for the productive joint work, Simon Leistikow for always
answering technical questions, and Adrian Derstroff for the discussions
in our office. Further, I want to thank Hennes Rave, Reyhaneh Sabbagh
Gol, Maryam Saffo, Vladimir Molchanov, Gulsayyar Ali, Gabriel Borrelli,
Tim Gerrits, Quynh Quang Ngo, José Matute Flores, and Muhammad
Jawad. I really enjoyed my time in the group together with you. Special
thanks go to Michael Böttinger for fruitful discussions about visualiza-
tion in climate science and to Maria Herick for topological discussions.
I would like to thank Verena Hörr, Andreas Völker, and Raphael Wit-
tkowski for their valuable ideas and feedback from the domain experts’
perspective. I am also very grateful for the great organizational support,
first by Evelyn Egelkamp and then by Katharina Sichma.

Further, I want to thank my family and friends for supporting me
outside of work. I especially want to thank Moritz Bensberg, who also
supported me during long days in the home office.

I am truly thankful for everyone mentioned above and to all the others
who made this thesis possible.

This work was partially funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) grant 260446826 (LI 1530/21-
2).

xi

C O N T E N T S

i introduction 1

1 introduction 3

1.1 Simulation Ensembles . 4

1.2 Ensemble Visualization . 6

1.3 Contributions . 9

2 ensemble visualization : state of the art and back-
ground 13

2.1 Visualization and Visual Analytics 13

2.2 Ensemble Visualization . 16

2.2.1 Parameter-Space Analysis 18

2.2.2 Uncertainty Visualization 20

2.2.3 Multi-field Visualization 21

2.3 Common Techniques in Ensemble Visualization 22

2.3.1 Dimensionality Reduction 22

2.3.2 Multi-run Similarity Plot 26

2.3.3 Parallel Coordinates Plot 29

2.3.4 Scatterplot Matrix 30

2.3.5 Functional Boxplots 30

ii parameter-space analysis 33

3 segmentation embedding 35

3.1 Related Work . 36

3.2 Fundamentals . 37

3.2.1 Orthogonal Graph Drawing 38

3.2.2 Cellular Automata 40

3.3 Visualization Tasks . 41

3.4 Overview . 42

3.5 Segmentation Embedding 44

3.5.1 Graph Embedding 44

3.5.2 Cellular Automaton 45

3.5.3 Segmentation Visualization 54

3.6 Algorithmic Evaluation . 57

3.6.1 Quality Criteria . 57

3.6.2 Results . 58

3.7 Embedding of 3D Segmentations 68

3.8 Discussion . 71

4 analysis of partitionings 73

xiii

xiv contents

4.1 Related Work . 74

4.2 Task Definition . 75

4.3 Overview . 76

4.3.1 Synthetic Dataset . 79

4.4 Similarity Space Analysis 80

4.4.1 Clustering . 80

4.4.2 Cluster Analysis . 83

4.4.3 Similarity Embedding 85

4.4.4 Temporal Evolution Plot 86

4.5 Parameter-Space Visualizations 87

4.5.1 Hyper-slicer . 87

4.5.2 Parameter-Space Embedding 94

4.6 Comparison to Alternative Visual Encodings 96

4.7 Analytical Workflow . 98

4.8 Case Studies . 100

4.8.1 Blood Flow . 100

4.8.2 Semiconductor Quantum Wire 102

4.8.3 Active Crystal . 104

4.9 Discussion . 106

5 interactive definition of characteristic measures 109

5.1 Related Work . 110

5.2 Requirement and Task Analysis 111

5.3 Workflow . 113

5.4 Visual Analysis System . 114

5.4.1 Detail Visualizations 114

5.4.2 Interactive Programming Interface 116

5.4.3 Timeplot . 117

5.4.4 Heatmap . 117

5.5 Analyzing Active Crystal Dynamics 118

5.6 Discussion . 121

6 topological analysis of parameter dependencies 123

6.1 Related Work and Background 124

6.1.1 Topological Landscapes 126

6.1.2 Merge Tree Matching 128

6.2 Overview . 129

6.3 Coherent Contour Trees . 130

6.3.1 Distance Metric . 130

6.3.2 Matching . 132

6.4 Coherent Visualization of Topological Landscapes 134

6.4.1 Animation . 135

6.4.2 Static Visualization 136

6.5 Results . 137

contents xv

6.5.1 Synthetic Datasets 137

6.5.2 Pattern Formation in 2D 139

6.5.3 Cavity Flow in 3D 139

6.6 Discussion . 141

7 spatial global sensitivity analysis 145

7.1 Related Work and Background 146

7.1.1 Global Sensitivity Measures 147

7.1.2 Space-filling Curves 151

7.1.3 Horizon Graphs . 153

7.2 Problem Specification . 154

7.3 Overview . 155

7.4 Visual Design . 157

7.4.1 Parallel Coordinates Plot 157

7.4.2 Spatial Sensitivity Visualization 159

7.4.3 Parameter Dependency Visualization 164

7.5 Evaluation . 166

7.5.1 Datasets . 166

7.5.2 Comparison of Sensitivity Computation Methods . 168

7.5.3 Space-filling Curve 173

7.6 Usage Scenarios . 174

7.6.1 Synthetic data . 174

7.6.2 Radiofrequency ablation data 175

7.6.3 Aneurysm data . 179

7.7 Discussion . 181

iii uncertainty-aware analysis of correlations 183

8 similarity images 185

8.1 Related Work . 186

8.1.1 Watershed Segmentation 187

8.2 Problem Specification . 188

8.3 Similarity Image . 188

8.3.1 Time Series Ensemble Correlation 189

8.3.2 3D Embedding . 190

8.3.3 Color Mapping . 191

8.4 Hierarchical Segmentation 192

8.5 Results . 194

8.5.1 Synthetic Dataset . 194

8.5.2 Global Climate Simulation 197

8.5.3 3D Blood Flow Ensemble 199

8.6 Discussion . 201

9 uncertainty-aware hierarchical correlation anal-
ysis 203

xvi contents

9.1 Overview . 204

9.2 Multi-level Correlations . 204

9.3 Visual Design . 207

9.3.1 Region Visualization 208

9.3.2 Correlation Heatmap 210

9.3.3 Uncertainty-aware Time Series Visualization 212

9.3.4 Coordinated Interactions 214

9.4 Results . 215

9.4.1 Synthetic Dataset . 215

9.4.2 2D Climate Ensemble 215

9.5 Discussion . 218

10 interactive correlation analysis in multi-field cli-
mate ensembles 221

10.1 Workflow . 222

10.2 Preprocessing . 223

10.3 Visual Design . 224

10.3.1 UMAP Embedding 224

10.3.2 Map View . 226

10.3.3 Heatmap . 227

10.3.4 Fourier Analysis . 229

10.4 Synthetic Dataset . 231

10.5 Climate Ensemble Analysis 233

10.5.1 North-Atlantic Oscillation 233

10.5.2 El Niño/Southern Oscillation 236

10.5.3 Domain Expert Feedback 239

10.6 Discussion and Conclusion 240

iv conclusion 243

11 conclusion and future work 245

v appendix 251

a additional results 253

a.1 Comparison of LMDS and PMDS 253

a.2 Similarity Images . 254

a.3 Evaluation of DGSA . 258

a.4 Evaluation of Space-filling Curves 259

b datasets 261

b.1 Synthetic Dataset with 4D parameter space 261

b.2 Reaction-Diffusion System 262

b.3 Cavity Flow . 262

bibliography 264

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

Scientific experiments in some areas, such as high-energy physics or as-
trophysics, can cost billions of euros. One prominent example is CERN
which plans to build a new supercollider that will cost at least 21 billion
euros [57]. Numerical experiments are often significantly cheaper and
allow for investigating such phenomena beforehand to perform more
targeted experiments that are more likely to show results of interest. Re-
cently, the strong growth in computational resources available increased
the number of cases where experiments can be replaced or preceded
by numerical simulations, which led to significant growth in the pop-
ularity of numerical simulations [44]. Their computation allows for in-
vestigating different phenomena and developing an understanding to
effectively reduce the number of experiments for solving a specific re-
search question. Therefore, numerical simulations are used in different
fields, including engineering, physics, biology, and medicine.

It is significantly easier to control external conditions in numerical
simulations. For experiments, much effort is often required to exclude
influences of the surrounding, such as changes in temperature, dust, or
radiation. Sometimes they cannot be excluded at all. Not only can these
factors be controlled explicitly in simulations, but it is also possible to
vary the parameters freely. Radiofrequency ablations for medical treat-
ment, for example, are highly dependent on the tissue properties, which
are hard to measure and impossible to influence as they depend on the
respective patient [151].

Sometimes simulations are the only possibility to investigate a par-
ticular phenomenon because controlled experiments are impossible, for
example in climate science. The influence of the greenhouse gas emis-
sion in the future years cannot be investigated in experiments. However,
simulation models allow for creating predictions about different possible
scenarios. This allows for understanding processes that would otherwise
be very hard to investigate using only experiments.

3

4 introduction

Model Output

Parameter
Simulation parameter

Model parameter

Initial conditions

Input
Multi-field

Spatial

Temporal

Members
Ensembles

Figure 1.1: Numerical simulations can be described by considering the input, the
model, and the output. Different kinds of parameters are used as in-
put of a model, which produces an output including multiple different
dimensions. This thesis does not cover the ensemble dimension visu-
alized with a dashed outline.

However, a single numerical simulation does not allow to capture dif-
ferent parameter settings or initial conditions. Therefore, it is common to
run several simulations by varying the input parameters, the initial con-
ditions, or both. This set of simulations is then referred to as a simulation
ensemble. Such ensembles may also cover the uncertainty in the output.
Creating simulation ensembles leads to large amounts of data with many
facets that are challenging to analyze. Especially in explorative analyses,
a fully automatic evaluation procedure is commonly unavailable. Thus,
visualizing the data allows for an analysis that combines the good vi-
sual perception of humans with the domain knowledge of the expert
who created the simulation.

1.1 simulation ensembles

We start by introducing the structure of the data obtained by numeri-
cal simulations and clarifying the terminology regarding the different
facets of the data. The creation of an ensemble, as considered in this the-
sis, includes three different aspects, which are shown in Figure 1.1: the
simulation input, the simulation model, and the simulation output.

The simulation input can be divided into two different groups of in-
put. The input parameters are parameter values used to drive the simula-
tion and can be divided into two groups. Simulation parameters influence
the simulation and have a meaning in the domain. They can be either
numerical or categorical values. Examples of this parameter type are tis-
sue properties in medical simulations or the inlet velocities in flow field
simulations. Model parameters form the other group of parameters. These
parameters influence the calculations and include, for example, the step
width used for numerical integrations or the grid size in simulation mod-
els covering two- or three-dimensional spatial domains. However, in this

1.1 simulation ensembles 5

Table 1.1: Dimensions of ensemble data covered in this thesis. As Chapter 3 dis-
cusses a general algorithm not specific to ensemble data, it is excluded
from this table.

Chapter Spatial Temporal Members Multi-field

4 ✗ ✗ ✗

5 ✗ ✗

6 ✗ ✗ ✗

7 ✗ ✗

8 ✗ ✗ ✗ ✗

9 ✗ ✗ ✗

10 ✗ ✗ ✗ ✗

thesis, we mainly focus on investigating simulation parameters. If model
parameters are considered, they are treated together with the simulation
parameters such that we consider input parameters in general without
further differentiation. Further, we focus on numerical parameters and
do not cover categorical parameters and the corresponding challenges
of heterogeneous data.

The second kind of input are initial conditions, which are used to initial-
ize the simulation model. However, if the initial conditions are unclear,
they can also be varied, leading to an ensemble structure. The variation
of initial conditions allows for capturing the uncertainty and propagat-
ing it to the ensemble output. While it is common for input parameters
to analyze the qualitative dependence of the output on the input, this is
significantly less common for the analysis of initial conditions.

The simulation model contains the simulation code or program itself.
In this work, we will treat the model as a black box that takes an input as
described above and computes an output based on the input. While not
all simulation models are deterministic, we do not cover the particular
aspects of the analysis of non-deterministic models in this work.

The simulation model’s output for several simulation runs based on
different inputs is called the simulation output or a simulation ensemble.
In general, the whole simulation output can contain up to five different
dimensions as proposed by Wang et al. [360]. The first dimension is
the ensemble dimension which is formed by multiple, different ensembles.
For example, different models can lead to one ensemble for each model,
which then need to be analyzed together. This work does not tackle this
dimension but instead focuses on analyzing single ensembles. The sec-
ond dimension is the member dimension. For each simulation input, one

6 introduction

simulation result is created by a single run of the simulation code. We re-
fer to this output as an ensemble member or run where these two terms
are used exchangeably in this thesis. If the data contains several ensem-
ble members, they form a separate dimension. This member dimension
is the most important difference between traditional (not ensemble) sci-
entific data corresponding to a single member and ensemble data, as we
analyze it in this thesis. Third, ensembles may contain a time dimension
which describes the variation over time. Especially dynamic phenom-
ena can only be analyzed by considering their temporal evolution. The
fourth dimension is the spatial dimension. Spatially resolved simulations
are very common to model, for example, flow fields, climate data, or
physical phenomena, with 2D or 3D being the most common spatial di-
mensionality. The spatial dimension is often covered in volume or grid
data. However, this is only sometimes the case. The last dimension is the
variable dimension. Each spatial location stores several variables for each
time step and each simulation run. The variables can be scalars, vectors,
or tensors. The data is called multi-variate, multi-faceted, or multi-field
ensemble if different variables are stored. One example of a multi-field
ensemble is climate data that stores temperature, pressure, wind, and
precipitation fields.

Not all of the dimensions are present in each ensemble. For example,
if the ensemble is static, which means it contains only a single timestep,
the time dimension is considered to be omitted [360]. In this thesis, we
focus on spatio-temporal multi-field simulation ensembles. We do not
address the ensemble dimension and exclude specifics of vector or tensor
data. A summary about the different dimensions covered in the different
chapters is provided in Table 1.1.

1.2 ensemble visualization

The interplay of the many different dimensions of ensemble data usu-
ally results in large amounts of data. Thus, the analysis of ensemble
data is very challenging. Automatic and semi-automatic approaches can
reduce the data, process it, and derive information that is easier to han-
dle. However, purely automatic approaches are not always available, not
always suitable for explorative analysis, and often not well suited for ob-
taining an intuitive understanding of the underlying data. At the same
time, visualizations support developing an intuitive understanding. Hu-
mans are very good at finding patterns in data. Additionally, domain
experts have much experience in their fields, which they bring into the
data analysis and which allows them to reach decisions and find inter-

1.2 ensemble visualization 7

Tasks

Compare

Parameter

Cluster

Trend

Overview

Feature

Optimization

Partitioning

Fitting

Outliers

Uncertainty

Sensitivity
Part II

Part III

Chapters 3-4

Chapters 5-7

Figure 1.2: Overview of different tasks for the visual analysis of simulation en-
sembles. The tasks for ensemble analysis were identified by Wang et
al. [360], while the tasks for parameter-space analysis were identified
by Sedlmair et al. [308].

esting information. Therefore, visualizations can be used to support the
domain scientists in their analysis.

Visual analytics combines the strengths of automatic approaches and
visualizations to include the human in the analysis. Due to the complex
nature of ensemble data, it is very difficult to effectively visualize it in
one static visualization while also showing details. Interactive visualiza-
tion approaches can solve the problem by allowing the users to interact
with the visualization directly. In this way, they can, for example, explore
the data in different levels of detail.

The complex task of analyzing a complete ensemble or specific aspects
of this kind of data can be summarized by a set of frequent tasks as pro-
posed by Wang et al. [360] (see Figure 1.2). One of the tasks is to obtain
an overview about the ensemble. The goal is to create a visual summary
representing the overall ensemble behavior, including all members. Com-
paring different ensemble members serves the purpose of identifying
differences and similarities between simulation runs. This comparison
task normally addresses pairwise similarities, but comparisons between
several ensemble members are also possible. Another common task is
clustering the simulation runs into groups that show a similar behav-
ior. Trend analysis mainly targets the temporal aspect of the data. This
goal targets the investigation of temporal trends of the whole ensem-
ble, groups of ensemble members, or single ones. Feature analysis targets
mainly spatial features even though temporal features are also possible.
It is possible to analyze features in single ensemble members but also
groups of members. The last task is the analysis of input parameters of
the simulation ensemble. This task focuses on the input-output relations
and is one of the core tasks tackled in this work.

8 introduction

A more detailed structure for analyzing the parameter space is pre-
sented by Sedlmair et al. [308]. Their conceptual framework for the
parameter-space analysis contains six tasks, some related to the higher-
level tasks identified by Wang et al. [360] for general ensemble analysis.
The optimization task aims at finding a suitable input to obtain a desired
outcome. If the desired outcome is clearly defined and quantified by a
single number, automatic optimization strategies can be employed. How-
ever, if the desired outcome is unclear or contains competing objectives,
human judgment aided by visualization becomes beneficial. A related
task identified by Sedlmair et al. is fitting the simulation output to mea-
sured data. Typically, numerical simulations model real-world behavior,
and one of its core targets is understanding the underlying real-world
phenomena. Even though this task is similar to optimization problems,
the user wants to approximate a particular result instead of finding the
best result using a general optimization function.

Partitioning the parameter space divides it into regions with similar
model behavior. This task is closely related to the clustering task, as
identified by Wang et al. Usually, groups of ensemble members are iden-
tified based on the simulation outcome, which is why a clustering of
the simulation result is used as a base to partition the parameter space.
Outlier detection aims at finding simulation runs that are special in some
kind and differ from most of the behaviors. This task typically includes
a comparison between ensemble members (see general tasks by Wang et
al.) and also holds for a more general ensemble analysis that does not
explicitly target the input-output connections.

The member dimension of a simulation ensemble introduces uncer-
tainty into the data that should be encoded visually. Uncertainty analy-
sis includes the analysis of different sources of uncertainty, including the
uncertainty in parameter choices as well as uncertain initial conditions.
Sensitivity analysis is often seen as an aspect of uncertainty, but the goal
differs. While uncertainty analysis generally asks about the certainty or
reliability of the output, sensitivity analysis targets the influence of the
different input parameters [239]. This includes quantitative sensitivity
analysis (how large is the influence of the individual parameters?) as
well as qualitative analysis (in which way do the parameters influence
the outcome, for example, does an increase of the parameter value lead
to an increase or decrease of the simulation outputs?).

In this work, we put a particular focus on the tasks of clustering ensem-
ble members to analyze the parameter space (Part ii) and create an over-
view of the ensemble together with an analysis of the temporal trend
(Part iii) where we also discuss uncertainty in the data. Regarding the
parameter-space analysis, this work primarily focuses on the aspects of

1.3 contributions 9

partitionings (see Chapters 3 and 4) and sensitivity analysis (see Chap-
ter 5-7, where Chapters 5 and 6 target the qualitative sensitivity and
Chapter 7 deals with quantitative sensitivity analysis). Our proposed
approaches also allow for outlier detection and analysis as well as uncer-
tainty investigation, but it is not the primary contribution.

1.3 contributions

This work addresses the interactive visual analysis of spatio-temporal
multi-field simulation ensembles. The contribution of this thesis targets
two topics, where the first focuses on different aspects of parameter-
space analysis. The second one targets the analysis of spatial correlations
in ensemble data which can be seen as a subtask of trend analysis as the
temporal aspect plays a big role.

After presenting an overview of the literature and introducing com-
mon methods in ensemble visualization (see Chapter 2), this thesis con-
tains the following contributions:

1. We propose embedding multi-dimensional segmentations or par-
titionings in the 2D plane (see Chapter 3). The embedding allows
for obtaining an overview of a partitioning, which is, for exam-
ple, helpful in analyzing parameter-space partitionings. The em-
bedding is a method for providing an occlusion-free overview of
the complete partitioning of multiple dimensions. It preserves the
essential key features of the partitioning: the topology of the seg-
mentation, segment sizes, and the length of the segment bound-
aries.

2. Interactive visual analysis approaches are proposed that focus on
understanding the input parameters’ quantitative and qualitative
influences on the simulation outcome. Partitioning the parameter
space allows finding regions of similar behavior in the simulation
output (see Chapter 4). Additionally, understanding the depen-
dency of the simulation output on the input parameters provides
insights into the model and the underlying system. On the one
hand, this process can be supported by interactively defining mea-
sures (see Chapter 5). On the other hand, analyzing the topological
structure and its variations in the parameter space allows for iden-
tifying structural changes in the simulation ensemble (see Chap-
ter 6). Sensitivity measures provide a quantitative metric for the
parameter dependency and, thus, support the identification of the
most relevant parameters which might vary over the spatial simu-

10 introduction

lation domain (see Chapter 7). In more detail, the contributions for
parameter-space partitioning can be summarized as follows:

a) For a distortion-free visualization of the parameter space and
its partitionings while also showing the boundaries of the dif-
ferent segments, we propose an enriched hyper-slicer as pre-
sented in Chapter 4. Compared to the embedding presented
in Chapter 3, the hyper-slicer allows to deduce the extent of
the partitions in the individual dimensions of the parameter
space and facilitates obtaining a geometrical understanding
of the partitioning. The hyper-slicer is embedded in an inter-
active visual analysis tool with additional linked views that
provide further context and facilitate navigation.

b) We propose a workflow for interactively defining measures
to understand how the simulation output depends on the in-
put parameters in Chapter 5. The workflow is implemented
in the interactive visual analysis tool ASEVis (Active System
Ensemble Visualization) that we developed in the scope of a
design study in the field of active systems.

c) To study the dependency of the simulation output’s topologi-
cal structure on the input parameters, we present a method to
create coherent contour trees in Chapter 6. Coherent contour
trees can be visualized as coherent topological landscapes
that allow for intuitive tracking of the topological variations
and, for example, identifying the parameter values at which
major changes in the output appear.

d) Spatial sensitivities can be analyzed by a combined overview
visualization using Horizon Graphs and space-filling curves
to reduce occlusion as presented in Chapter 7. For this pur-
pose, we generalize the concept of data-driven space-filling
curves [399] to multi-field data. To investigate the qualita-
tive sensitivity concerning the parameter space, we include
a direct visualization of the simulation output on the input
parameters. As the analysis result strongly depends on the
chosen sensitivity and space-filling curve computation algo-
rithms, we compare different approaches and derive a guide-
line on which approach to choose.

3. Our new analysis methods support the global visual analysis of
correlations between different spatial regions:

a) We propose an overview visualization called similarity im-
ages to analyze the spatial correlations in ensemble data. Sim-

1.3 contributions 11

ilarity images use color coding to encode similarities in differ-
ent spatial regions, see Chapter 8.

b) Based on the similarity images, we present an uncertainty-
aware interactive visual analysis approach with locally adapt-
able levels of detail in Chapter 9. The approach allows for
studying time series correlations while including time lags in
the analysis.

c) We propose an interactive visual analysis approach based on
dimensionality reduction to investigate correlations among
spatial regions in multiple fields at once, see Chapter 10. The
method allows for a comprehensive analysis including the
correlation’s spread of the ensemble and an uncertainty-aware
investigation of the frequency spectrum.

4. All approaches are applied to simulation ensembles of different
domains to demonstrate their utility.

Finally, we conclude with a discussion of the contributions and pro-
pose future research directions.

2
E N S E M B L E V I S U A L I Z AT I O N : S TAT E O F T H E A RT
A N D B A C K G R O U N D

We start by presenting the current state of related work relevant to this
thesis. Here, we provide a general overview. More specific topics related
to single aspects are discussed directly in the corresponding chapters.
First, we provide a high-level overview of the visual analysis process in
Section 2.1. Section 2.2 provides more details on related work in ensem-
ble visualization and its different facets. Section 2.3 presents background
information on essential visualization techniques used on various points
in this thesis.

2.1 visualization and visual analytics

Visualization, which is located at the intersection between computer
graphics and human-computer interaction, is the graphical represen-
tation of data that aims at supporting humans for the given analysis
task [237]. Today, large amounts of data are created in various different
fields, including medicine, physics, and geology, but also, for example,
tracked by social networks [292, 175]. The ever-growing amount of data
makes an analysis without using computers infeasible.

However, while computers allow fast data processing, humans are
good at bringing their previous experience into the analysis process.
Therefore, it is helpful to include domain experts in the analysis of data.
Visually representing the data allows for obtaining an intuitive under-
standing while also helping to identifying patterns quickly. Visualiza-
tions are generally preferable to fully automated approaches if a process
needs an in-depth understanding, cannot be automated, or the visual-
ization approach acts as an intermediate step to develop new automatic
methods. It takes advantage of the human’s capability to process visual
information in parallel and can reduce the cognitive load, which is bene-
ficial to, for example, reduce the impact of the human’s limited working
memory [344]. In contrast to more comprehensive visualizations, statis-

13

14 ensemble visualization : state of the art and background

Data generation

Raw data Visualization application

ImagesUser

Input

Output

Observe

Interact

Insight

Figure 2.1: Interactive visualization process as described by Telea [336].

tical summaries of data often dramatically compress information which
might lead to the loss of context or important data [16].

Visualization allows for showing larger amounts of data while still
keeping them cognitively digestible for the user. Further, the user can
still process and analyze the data visually even if the problem that
should be solved is not well-defined [237]. This supports an exploratory
analysis allowing to detect previously undefined patterns and, thus, for-
mulating a new hypothesis of the data.

In the field of visualization, it used to be common to differentiate
between information visualization (InfoVis) and scientific visualization
(SciVis) [344, 188]. InfoVis commonly deals with data that does not con-
tain spatial positions, such as tables, networks, or text data, and is dis-
crete in nature. Scientific visualization, however, works on data with a
spatial component stemming from different fields. This kind of data is
often discrete but samples a continuous phenomenon. While these two
kinds of data used to be treated separately, combinations of techniques
from both fields become more common [188]. For example, the visual-
ization of simulation ensembles contains spatial aspects for single time
steps and members. However, to obtain overview visualizations and
comparison of the members, techniques stemming from InfoVis research
such as projection methods and parallel coordinates are used [360]. Even
though all chapters in this thesis deal with scientific data, the proposed
methods combine both fields.

Interaction plays a crucial role in handling the growing complexity
and size of data. A static visualization commonly shows only a single
level of detail or a certain single aspect of the data. Interaction, however,
allows the user to change the view by interacting with it, allowing the
use of different queries [237]. The general interactive visualization pro-
cess as presented by Telea [336] is shown in Figure 2.1. It starts with
data generation, which can have many different sources. For scientific
data, these sources are normally either measurements or numerical sim-
ulations [87]. These data sources yield the raw data, which in the case of
simulations, could cover the spatial and the temporal domain and con-

2.1 visualization and visual analytics 15

KnowledgeData

Visualization

Models

Mapping

Data mining

Building Visualization

Perception and cognition

Cognition

Data exploration

Automated data analysis
Feedback loop

Transformation

User interaction

Parameter refinement

Figure 2.2: Visual analytics process as proposed by Keim et al. [185, 186]

tain multiple fields. This raw data is used as an input to a visualization
pipeline. The output is an image, a set of images, or an interactive visu-
alization. The end user then observes this set of (not necessarily static)
images. In the context of this work, the end users are scientists. The users
gain insights into the original phenomenon and interact with the visu-
alization application to influence the output. Thus, visually analyzing
data is usually an iterative process.

Visual analytics is a relatively young field of research defined by Cook
and Thomas as “the science of analytical reasoning facilitated by inter-
active visual interfaces” [68, 338]. By combining computational methods
with an interactive visual analysis executed by a human, the goal is to
combine the advantages of both aspects of data analysis. It allows for an-
alyzing more complex and often heterogeneous data. This combination
of methods also leads to a strong interdisciplinarity of methods. Visual
analytics solutions do not only combine methods from SciVis and Info-
Vis with methods from data science, statistics, and machine learning but
also contain a strong connection to the data domain [186]. Developing an
effective visual analytics approach without domain knowledge is nearly
impossible, which is often solved by close collaborations with people
working in the corresponding domain.

The visual analytics process described by Keim et al. [186, 185] is
shown in Figure 2.2. The data which should be analyzed might first
be transformed to bring it into a format that can be processed. It is
then mapped to a visualization that can be investigated using the visu-
alization pipeline as shown in Figure 2.1. Besides the data exploration,
an automatic analysis is performed. Here, data mining methods are ap-
plied to a model which can be tuned by refining the model parameters.
Note that the term model is used here broadly and includes, for ex-

16 ensemble visualization : state of the art and background

ample, dimensionality reduction techniques. In visual analytics, there is
a strong connection between data exploration and automated analysis.
Both kinds of analysis lead to a knowledge generation through cognition
and perception. Normally, this process is rather a feedback loop than a
linear process. Thus, the gained knowledge can again be used to work
with the data and start the process again for further refinement or inves-
tigation of other aspects of the data.

One common navigation strategy in interactive visualizations is pro-
vided by the information seeking mantra proposed by Ben Shneiderman:
“Overview first, zoom and filter, then details on demand” [313]. In visual
analytics, this paradigm was extended by Keim at al. [186] to include the
automatic analysis, which leads to “Analyze First - Show the Important
- Zoom, Filter and Analyze Further - Details on Demand”. Besides these
rather general paradigms, several different taxonomies of interactions
on different levels of detail in the context of visual analytics and infor-
mation visualization have been proposed [392, 213, 65, 364]. One way
of implementing these interaction and navigation strategies is by using
multiple coordinated views [287].

The research process in visualization and visual analytics typically
contains several different steps. One of the first steps is clearly under-
standing the problem. In the case of design studies, this often results in
a task analysis and abstraction [309, 329]. A visual design can be devel-
oped based on the identified problem and tasks. This visual design can
be formed by combining existing visualizations, which is common in
design studies. In this case, the design space is explored, and design de-
cisions are derived from the analysis tasks. If no suitable techniques and
algorithms exist, new methods need to be developed [235]. In both cases,
it is important to evaluate the visual design and the algorithm [236, 230].
If a user-centered design principle [344] is followed, this can include
user studies, use cases, or collecting feedback from domain experts. In
the case of algorithmic contributions, this includes, for example, run
time analyses and evaluating performance metrics. The nested model
presented by Munzner et al. [236] forms a general model for evaluating
visualization research.

2.2 ensemble visualization

With the growing amount of ensemble data available, various approaches
for its analysis have been proposed. Approaches for the analysis of sim-
ulation ensembles include a wide range of application areas, including
climate and weather data [243, 222, 200, 355, 396], ocean flow fields [386,

2.2 ensemble visualization 17

158, 279], medical data [151] and examples from chemistry [315], phys-
ics [203] and engineering [34, 226].

The state of the art in ensemble visualization and its various aspects
have been covered in different surveys [219, 6, 281]. Obermaier and
Joy [248] identified a set of mathematical, algorithmic, and conceptual
challenges. While the mathematical challenges include defining features
and metrics, the algorithmic challenges deal with data complexity and
enable an exploration of the parameter space. The conceptual challenges
include finding the best prediction, connecting the parameter space to
the data, and intuitively visualizing it. These aspects are closely related
to the identified challenges by Crossno [71]. Further open questions are
presented by Wilson and Potter [374].

In this thesis, we focus especially on the connection between param-
eter space and similarity space and the exploration of the parameter
dependencies and sensitivities. We also address the problem of feature
definition by providing an approach for the interactive definition of char-
acteristic measures that should preserve certain features. Broad state-of-
the-art overviews about the current approaches of the field are published
by Kehrer and Hauser [183], who generally address multifaceted scien-
tific data, and Wang et al. [360], who provide a survey about the different
facets of ensemble visualization.

A similarity-based analysis of simulation ensembles is a common ap-
proach that often includes clustering in different dimensions. Ferstl et
al. [105, 106] presented approaches for clustering and visualization of
ensemble data, focusing on weather data. Clustering can also be used
to compare model output with reference data [195] or to show multi-
resolution ensembles in nested parallel coordinates [361]. Climate en-
sembles can also be clustered hierarchically [181]. Further, clustering
can be applied to visualize similar ensemble members in flow data [169].
Besides clustering, computing similarities between ensemble members
allows for creating data projections on different levels of detail. Jänicke
et al. [167] used a graph-based projection of the multi-dimensional space
in which brushing can be used to define features. An overview of a sim-
ulation ensemble can be obtained by using a multi-run similarity plot
as proposed by Fofonov et al. [110] where, for example, a field similar-
ity measure [111] or an isocontour similarity measure [112] can be used
to create a time-dependent similarity embedding. Section 2.3.2 provides
more details about this approach.

Many approaches in the scientific visualization literature deal with the
visualization of time-dependent temporal data [14, 6, 5]. Often, animations
are used to tackle the temporal component [7], but other approaches
try to incorporate the time-varying data in a single volume rendering

18 ensemble visualization : state of the art and background

by aggregating different time steps into a single volume [378]. However,
the previously mentioned approaches do not deal with ensemble data.
In the field of ensemble visualization, the use of graph structures may
be used to show the temporal component of the data. Obermaier et al.
presented a flow-graph representation of the ensemble based on cluster-
ing [247]. Shu et al. [314] also proposed a graph-based view, Ensemble-
Graph, to show the temporal evolution and embedded this approach in
a visual analytics system. Another approach used shape comparisons,
visualizations of cluster trees, and glyph-based visualizations to show
spatio-temporal ensemble data [138].

Besides the temporal aspect, many different approaches have been
used to visualize the different facets of ensemble data. Recently, topolog-
ical methods for analyzing simulation ensembles became more common
[21, 102, 152, 232]. A detailed discussion of the state of the art in topolog-
ical ensemble visualization is provided in Chapter 6. Additionally, deep
learning has been used to create surrogate models and for visualizing
the data [147, 148, 327, 137, 311, 142]. For a comprehensive survey on
the use of machine learning in the field of scientific visualization, we
refer to Wang and Han [359].

Another frequently-used approach are aggregations of the different en-
semble dimensions [300, 277, 182]. These aggregations reduce the com-
plexity of the data but also lead to the loss of information. Glyph-based
visualizations can also be used to show certain aspects of the ensemble
and, for example, compare ensemble members [263] or combine them
with scatterplot-based visualizations to show ensembles of 2D scalar
fields [267]. In situ visualizations are sometimes combined with compu-
tational steering, allowing for influencing the simulation and, for exam-
ple, adapting parameters while the simulation is running. Matkovic et
al. [224] proposed a computational steering approach in the context of
engineering simulations. Unger et al. [347] did not intervene in the simu-
lations but focused on visualizing the simulation process. Other aspects
common in the analysis of ensembles are the comparison with ground
truth data created by measurements [38, 201] as well as model valida-
tion [266].

2.2.1 Parameter-Space Analysis

Parameter-space analysis is a key question in the exploration of simu-
lation ensembles, often created by varying input parameters. The con-
ceptual framework proposed by Sedlmair et al. [308] covers different
facets of parameter-space visualization. A recent survey by Piccolotto et

2.2 ensemble visualization 19

al. [265] provides an up-to-date overview of parameter-space analysis
beyond spatio-temporal simulation ensembles.

Different approaches focus on the local dependencies of the simulation
outcome on the parameter space, often focusing on optimizing the pa-
rameters. Bruckner and Möller [53] proposed a tool that facilitates the
parameter choice for physical animations but does not include a direct
visualization that relates the simulation output to the input parameters.
Parameter-space visualizations are supported by the approach by Berger
et al. [33], who included local visualizations to support the optimiza-
tions of parameter values by showing the neighborhoods of the selected
points in the parameter space. InSituNet [148] uses deep learning for
parameter-space exploration and also includes a local sensitivity anal-
ysis. Approaches specific to parameter spaces of other data types, like
time series, cannot be directly applied to spatio-temporal simulation en-
sembles [93]. For allowing a domain-specific analysis of the relationship
between input parameters and simulation output, we provide a method
to interactively define characteristic measures and visualize them with
respect to the input parameters in Chapter 5.

Other approaches cover a more global analysis of parameter spaces.
Paraglide [34] is a system that includes several different methods for
parameter-space analysis but focuses mainly on the sampling aspect. It
has also been proposed to visualize the parameter space using a scat-
terplot matrix combined with additional scatterplots to investigate geo-
scientific data [346]. Luboschik et al. [221] combined the visualization
of parameter space and simulation outcome by showing the parameter
space with a color coding in a line but do not include a geometric visu-
alization of the parameter space. Tuner [343] used hyperslices to visual-
ize the parameter space for image segmentation. Fernandes et al. [104]
designed glyphs to study region transitions between regions of approx-
imately homogeneous behavior in the parameter space. A parameter-
space analysis approach on multiple levels of detail was proposed by
Splechtna et al. [321]. Other authors proposed global, projection-based
approaches [320, 253] or target categorical parameter spaces [345]. How-
ever, none of the presented parameter-space analysis methods includes a
full workflow for semi-automatic segmentation and geometry-preserving
global visualization as we present in Chapter 4. Additionally, none of
these methods provides a complete overview of a multi-dimensional par-
titioning which shows the partitioning’s topological structure but also
the sizes of the partitions and their boundaries like we present in Chap-
ter 3.

A slightly different aspect is the analysis of sensitivities to the in-
put parameters. While some authors proposed methods for local sen-

20 ensemble visualization : state of the art and background

sitivity analysis [148] or mainly focused on comparisons [8], others pro-
vided methods for creating surrogate models that facilitate the compu-
tation of sensitivity indices [311]. Neuhauser et al. [240] used piecharts
for visualizing multiple sensitivity values on trajectory data. Biswas et
al. [37] combined clustering of spatial, global sensitivity indices with
map-visualization to analyze weather ensembles. However, their approach
does not generalize to 3D data like our approach in Chapter 7.

2.2.2 Uncertainty Visualization

Simulation ensembles allow for propagating the uncertainty of the input
to the simulation output. Johnson and Sanderson [176] discussed the im-
portance of visualizing uncertainty in 3D visualizations. Many surveys
of the last years covered different topics of uncertainty visualization and
included different categorizations [254, 128, 276, 52, 40, 172]. Some over-
view articles focus on particular aspects of uncertainty visualizations
like a taxonomy for uncertainty in medical data [286] or the application
of uncertainty visualization in bioinformatics [369].

While uncertainty in 1D is commonly visualized using boxplots or
variants thereof [40], there is no standard way of uncertainty visualiza-
tion in higher dimensions. Kao et al. [180] proposed a visualization of 2D
distribution datasets that can be seen as a way of generalizing boxplots
to 2D. Summary plots [275] extended boxplots with additional statisti-
cal measures and are also generalized to 2D. Other authors study the
variability of gradients in 2D [258] or use color codings for variations in
the data [126]. Using glyphs for uncertainty is another option that has
been studied [285, 210]. Dynamic volume lines [370] use a space-filling
curve to unfold spatial data to one dimension. As the 1D representation
is scaled based on variation in the data, it allows for quickly spotting
regions of the highest variability in spatial data.

Some methods include encoding the uncertainty in traditional volume
visualization approaches. Sakhaee et al. [294] proposed an approach for
volume rendering for uncertain data. Many methods have also been pro-
posed to visualize uncertain isosurfaces [145, 20, 262, 274, 19, 259, 273,
79, 78].

A relatively unexplored area is the identification of uncertain features.
One method for extracting uncertain features uses copula functions in
different spatial locations [144]. Recently, it has been studied how uncer-
tainty can be included in dimensionality reductions which are also com-
monly used to show different aspects of simulation ensembles. Hägele et
al. [135] proposed an uncertainty-aware multi-dimensional scaling that
allows for projecting uncertainty in the high-dimensional space in lower

2.2 ensemble visualization 21

dimensions and, thus, extended the uncertainty-aware principal compo-
nent analysis presented by Görtler et al. [124].

However, the presented approaches do not target the uncertainty in
correlations between ensembles of time series, as we discuss in Chap-
ters 8-10 of the thesis.

2.2.3 Multi-field Visualization

The visualization of spatial multi-field data is a challenging task that
has been addressed in various approaches. A good overview, also be-
yond the field of ensemble analysis, is given by Fuchs et al. [117] and
He et al. [150]. Abstract visualizations [363] and system using multiple
views to visualize different aspects [287, 130, 381] can be used in the
analysis of multi-field data. As presented by Molchanov et al. [233], con-
tinuous projections provide an opportunity to reduce the dimensionality
induced by the different fields. To link different visualizations, brushing
techniques are commonly used [198, 82].

While volume rendering is a popular technique for single-field vol-
ume data, multi-field volume renderings allow for displaying multi-field
data. However, finding a suitable transfer function is critical for quality
even though it is a complex task. Other fusion-based techniques can fa-
cilitate the volume visualization of multi-field data [376]. Woodring et
al. [379] used an operator for comparative multi-field visualizations that
are also shown as a volume rendering. Another possibility is a visual-
ization of multi-field datasets based on combining different rendering
techniques [134, 141].

One option to study the relationship between different fields is the
study of correlations among the different variables that can be either
visualized directly [362, 60, 326] or in derived visualizations like the
so-called multi-field graph as presented by Sauber et al. [301]. Gosink
et al. [125] proposed a query-driven technique that works on the rela-
tionships between the variables. Deep learning has also been used to
understand how the different fields related to each other [137].

Dimensionality reduction techniques allow for reducing the data com-
plexity. Demir et al. [77] used a space-filling curve to linearize the 3D do-
main to support an occlusion-free visualization of multiple fields. This
approach is closely related to the visualization of multiple sensitivity
fields, as discussed in more detail in Chapter 7. Hazarika et al. [143] pro-
posed using probabilistic principle component analysis as a base for a
partitioning approach for multivariate data. Temporal multi-dimensional
scaling (MDS) plots [165] can be used to visualize multivariate time se-
ries for detecting patterns. Fofonov et al. proposed a similarity measure

22 ensemble visualization : state of the art and background

between scalar fields that is also applicable to multi-field data [111] as
well as MultiVisA, a framework for the interactive analysis of multi-field
simulation data [110]. These approaches have also been applied to ana-
lyze the impact of astroids [203]. Clustering techniques are also applied
to the analysis of multi-field data. Long et al. [217] visualized hierarchi-
cal clusters in multivariate data by combining tree visualizations with
parallel coordinates, while He et al. [149] used bi-clusters to analyze
multivariate scientific data. Clustering can further be used to investivate
distributions in multi-field data [199].

Some single-field volume visualization and analysis techniques have
been extended to work with multi-field data. Feature level sets [168] are
a generalization of isosurfaces, while Carr et al. [55] presented contour
nets which generalize contour trees. Multi-field data can also be encoded
in more abstract visualizations. Kumpf et al. [198] proposed enhanced
violin plots to represent different ensemble members including multi-
ple fields. Multi-field graphs [301] use a graph visualization for single
multi-field volumes while Tao et al. [334] presented matrices of isosur-
face similarity maps for time-varying multivariate data. Different glyph
designs have also been proposed in the context of multi-field visualiza-
tions [206, 289, 190].

Many of these approaches focus on single aspects of the multi-field
data, and most of them do neither tackle the unique challenges imposed
by ensemble data due to the multi-run nature nor the temporal aspect of
the data. Therefore, especially those two aspects need further research.
In Chapter 10, we contribute to addressing these challenges by inves-
tigating correlations between multiple fields of spatio-temporal simula-
tion ensembles.

2.3 common techniques in ensemble visualization

In the following, we will explain different techniques commonly used in
the analysis of ensemble data and relevant to different chapters of the
thesis. The techniques only used within a specific chapter are introduced
directly in that particular chapter.

2.3.1 Dimensionality Reduction

Dimensionality reduction is a group of techniques applied to reduce
the dimensionality of multi- or high-dimensional data. In the scope of
this work, the goal is typically a visualization of the data. Therefore, the
target dimensionality is commonly 2D or 3D, as these dimensionalities
are the most convenient to visualize. However, dimensionality reduction

2.3 common techniques in ensemble visualization 23

typically leads to a loss of information. Therefore, also higher target
dimensions can be used in the context of visualization, see, for example,
the visualizations using scatterplot matrices in Chapter 5.

Many different techniques for dimensionality reduction have been pro-
posed. They optimize different criteria and are also differentiated by
their properties. One commonly distinguishes between methods that pre-
serve the local or the global structure and between linear and non-linear
techniques.

In this section, we will provide a brief introduction to principal com-
ponent analysis (PCA), multi-dimensional scaling (MDS), and uniform
manifold approximation and projection (UMAP), which are the dimen-
sionality reduction methods that are used in this thesis. For a more exten-
sive discussion and evaluation of dimensionality reduction techniques,
we refer to the comprehensive survey papers [98, 385, 291, 214, 187].

2.3.1.1 Principal Component Analysis

PCA aims at finding the principal directions of the dataset, which cover
the largest variability among the data points. The principal directions or
principal components can then be used to change the basis of the rep-
resentation. PCA can reduce the dimensionality by only using the first
components covering the largest variability. The principal components
are the eigenvectors of the data points’ covariance matrix [349]. This can
be expressed as solving the eigenvalue problem

Cov(X)M = λM ,

where X is a N×d matrix of N standardized, d-dimensional data points.
Cov(X) is a d×d covariance matrix, λ denotes the vector of eigenvalues,
and M is a matrix of eigenvectors that form the principal components.
Depending on the analysis task, the data points should be standardized
before computing PCA. Standardization can be achieved by subtracting
the mean and dividing by the standard deviation. The eigenvalues λi
with i = 1, . . . ,d can be used to estimate the percentage of the variance
covered in the corresponding principal direction given by the i-th eigen-
vector. If only the k largest eigenvectors are considered, they can be used
to form a d× k matrix Mr. Then, low-dimensional points Y can then be
computed as Y = XMr.

24 ensemble visualization : state of the art and background

2.3.1.2 Multi-dimensional Scaling

MDS [373] is a dimensionality reduction technique that minimizes stress
defined as

ϕ(Y) =
∑
i,j

(
di,j −

∥∥yi −yj

∥∥)2 ,

where di,j is the dissimilarity between the high-dimensional points xi
and xj and yi and yj are their projections. In this work, we only consider
classical MDS, which assumes that the dissimilarities di,j contain metric
properties. Non-metric MDS can be used for similarity measures that
do not hold this assumption. PCA and classical MDS are equivalent if
the Euclidean distance is used for the dissimilarity di,j. However, the
advantage of classical MDS over PCA is its general applicability to other
metric measures like field similarity measures (see Section 2.3.2).

Classical MDS can also be computed using an eigenvector decompo-
sition [373]. However, the first step is creating a matrix of squared prox-
imities:

P(2) = [d2i,j] .

Then, a method called double-centering is applied to obtain a matrix B,
which is used for the eigenvalue decomposition:

B = −
1

2
JP(2)J ,

where J = I− 1
NE using the identity matrix I, the number of samples N

and the matrix E with all entries being 1. Next, the m largest eigenvalues
λ1, . . . , λm of matrix B are extracted as well as m corresponding eigen-
vectors e1, . . . ,em. This can be achieved either by computing the full
eigenvalue decomposition or, if this is infeasible due to the high dimen-
sionality of the data, an iterative procedure can be used. The positions Y

in the m-dimensional space can then be computed by

Y = VmΛ
1
2
m

where Vm is the matrix composed by m eigenvectors and Λm is the
diagonal matrix with m eigenvalues of B on the diagonal.

Due to the singular value decomposition, MDS can be costly to com-
pute for large datasets. In these cases, the MDS result can be approxi-
mated by embedding a subset of the sample points and approximating
the embedding of the remaining points based on the already embedded
points. Landmark MDS (LMDS) and Pivot MDS (PMDS) are two meth-
ods that follow this strategy.

2.3 common techniques in ensemble visualization 25

LMDS [316] follows the idea of placing a subset of the sample points
as landmarks. Thus, the eigendecomposition only needs to be computed
on the landmarks, while the other points are placed as a linear combina-
tion of the landmark points. While classical MDS is based on the eigen-
value decomposition of the n×n matrix B, LMDS reduces the size of the
matrix to k× k for k samples. However, LMDS does not use additional
non-landmark points that might already have been placed. PMDS [48]
aims at overcoming this potential drawback by including the distances
to the other points. PMDS achieves this goal by considering an n× k

submatrix of the matrix P(2). After double-centering the submatrix, one
obtains a matrix C. To obtain the positions of the sample points, the
largest eigenvectors of CTC are computed. These two steps induce ad-
ditional computational costs compared to LMDS, while the other steps
require the same run time. Indeed, we find PMDS to yield better results,
as shown by a brief comparison in Appendix A.1 and, thus, use it as an
approximation for MDS in Section 8.5.3.

2.3.1.3 UMAP

While PCA and classical MDS are linear, distance-preserving dimen-
sionality reduction techniques, nonlinear techniques allow for finding
other features in the data. Many different nonlinear dimensionality re-
duction techniques exist, including locally linear embedding (LLE) [290],
ISOMAP [337] or Kernel PCA [302].

T-distributed stochastic neighbor embedding (t-SNE) [348] is a non-
linear dimensionality technique optimized for showing clusters. How-
ever, as t-SNE only considers the samples’ neighbors, the dataset’s global
structure is not preserved in the embedding.

Uniform manifold approximation and projection (UMAP) [228] allows
for reducing the dimensionality based on finding Riemannian manifolds
in the multi-dimensional space and, then, embedding it in the lower
dimensional space. While providing comparable results in representing
clusters in the embedding as t-SNE, UMAP tends to preserve better the
global structure of the dataset, and can be computed more efficiently. In
the following, we will provide a short description of the basic ideas of
the algorithm. For a more detailed explanation, we refer to McInnes and
Healy [228].

The first step of computing UMAP is approximating the manifold by
creating a fuzzy graph whose vertices are formed by the points. For cre-
ating the edges, each point’s k nearest neighbors are identified based on
a user-defined value k. Here, small values of k result in depicting more
local structures in the final projection, while large values of k lead to a

26 ensemble visualization : state of the art and background

more global representation. Next, a region around the point is created.
This region is defined by a radius set based on a distance to the kth near-
est neighbor. If these regions of two different points overlap, the points
are connected by an edge of the graph, where the edge is weighted based
on the distance between the points. This can be interpreted intuitively by
a decrease in the probability of the edge if the distance between points
increases. To ensure that each point is connected to at least its near-
est neighbor, the edge weight is defined such that the probability only
decreases beyond the nearest neighbor. Thus, the graph creation is gov-
erned by the number of considered nearest neighbors k.

After approximating the manifold by a graph, this graph needs to be
embedded in the target domain. For this purpose, a force-based graph
layout is used. In principle, a random initialization can be used, but start-
ing from the spectral layout has shown to provide faster convergence.
Then, the weighted edges are used to relax the layout and compute an
embedding of the graph that approximates the high-dimensional graph
as well as possible. UMAP is well suited to identify clusters which is
why we use it in Chapter 10 to select groups of correlated segments.

2.3.2 Multi-run Similarity Plot

The multi-run similarity plot is an overview visualization of a whole en-
semble originally proposed by Fofonov et al. [112]. Each spatio-temporal
ensemble member is represented by a polyline where each point repre-
sents a single timestep connected in the temporal order. Proximity in the
multi-run similarity plot encodes the similarity between the respective
timesteps.

To compute this similarity-preserving visualization, at first, similari-
ties between the individual time steps need to be computed. The iso-
contour similarity [112] compares the shapes of isosurfaces among two
scalar fields for a given isovalue. As the isocontours can be seen as two
sets defined by the spatial samples inside the isocontour, two different
isocontours can be compared by the Jaccard distance, a standard dis-
tance measure for comparing sets. Since every ensemble member typ-
ically contains a large number of spatial samples, a Monte Carlo sam-
pling of the spatial domain is used to reduce the amount of data. The
sample points obtained by the Monte Carlo sampling are stored in a
feature vector for the respective scalar field. For each sample point, it is
decided if it lies inside the isocontour defined by the selected isovalue or
outside. This results in a binary feature vector for each scalar field that

2.3 common techniques in ensemble visualization 27

can then be used to compute the Jaccard distance between two feature
vectors A and B representing two scalar fields:

d(A,B) = 1−
MA∧B

MA∨B
,

where MA∧B is the number of samples inside both isocontours and
MA∨B is the number of samples located within at least one of the iso-
contours.

Another similarity measure that can be used for creating multi-run
similarity plots is the multi-field similarity measure [111], which is a
generalization of the isocontour similarity that takes the whole field into
account and does not require the choice of an isovalue. The expressibility
of the isocontour similarity measure strongly depends on the choice of
the isovalue, and even if a suitable isovalue was found, a single isocon-
tour does not necessarily describe the underlying field sufficiently well.
When considering all possible isocontours, one could notice that for each
entry of the feature vector defined by the Monte Carlo sampling, there is
precisely one isovalue for which it switches from inside the isocontour to
outside the isocontour. This value corresponds to the scalar value stored
in this spatial sample point.

For the computation of the multi-field similarity measure, we assume
that the field values in the scalar fields are normalized to the range [0, 1].
Therefore, also the values ai and bi, which are the i-th entry of the
vectors A and B, are normalized to this range. Then, we can compute
the distance between vectors A and B as

d(A,B) = 1−

∑N
i=1 (1− max(ai,bi))∑N
i=1 (1− min(ai,bi))

,

where N is the number of sample points chosen for the Monte Carlo ap-
proach. This similarity measure can be easily generalized to multi-field
data, for example, by concatenating the feature vectors for the different
fields. However, in this work, it is only used for processing individual
scalar fields.

For creating a multi-run similarity plot, one of these field similarity
measures is chosen to create a distance matrix between all timesteps of
all ensemble members. This distance matrix can then be used as an input
to the classical MDS algorithm as described in Section 2.3.1. In the projec-
tion, all samples of a single ensemble member are connected in temporal
order. This leads to one polyline representing one ensemble member. An
example of a multi-run similarity plot is shown in Figure 2.3.

The projection could be performed with different target dimensions.
While a 3D visualization can show the most information of the original

28 ensemble visualization : state of the art and background

Figure 2.3: 2D multi-run similarity plot. Each polyline represents the temporal
evolution of a single ensemble member where the colors differentiate
between the members, and the saturation encodes time. Distances in
this plot depict the similarities between the underlying scalar fields.
All simulation runs originate at the same point but diverge over time.

dataset, 3D visualizations might be hard to understand, and the depth
perception in the third dimension might be difficult. These problems do
not occur in a 2D projection. A projection to the most important dimen-
sion allows several additional visualizations, as the second dimension
can be used to show an additional variable. One example is the visu-
alization of the evolution over time, where the horizontal axis of the
visualization is used to encode time, and the vertical axis corresponds
to the most important component of the data. Interaction with the visu-
alization allows, for example, for selecting ensemble members or certain
timesteps. If the 1-dimensional projection is visualized over time, it is
also possible to select the time range of interest for further analysis.

In this thesis, we use multi-run similarity plots to obtain an overview
about the spatio-temporal evolution of the ensemble members. We also
extent the methods to aggregate over time such that each point repre-
sents an entire ensemble member which allows to identify groups of
ensemble members as discussed in Chapter 4.

2.3 common techniques in ensemble visualization 29

2.3.3 Parallel Coordinates Plot

Parallel coordinates plots (PCP) allow for a distortion-free visualization
of multi-dimensional data [153, 163, 173]. Each dimension is represented
by an axis. Therefore, for a d-dimensional space, d axes are needed. Typ-
ically, they are placed in parallel. Each d-dimensional point is then visu-
alized as a polyline where the vertices lie on the axes and represent the
corresponding values.

If straight lines are used to connect the vertices on the axes, parallel
coordinates exhibit a point-line-duality. Each point in the 2D Euclidean
(sub)space is represented as a line segment in parallel coordinates. At
the same time, each point in parallel coordinates is represented by a
line in the 2D Euclidean space. Additionally, the lines between two ad-
jacent axes allow for deriving information about the correlation of the
attributes. Examples of positive, negative, and no correlation are shown
in Figure 2.4.

However, this information can only be derived for adjacent axes. There
is no inherent order of the axes, but it plays an important role in this
visualization. To cover this problem, a common interaction supported
by parallel coordinates is the possibility of changing the axes ordering
interactively. In this way, the user can try different combinations and,
thus, perform different pairwise analyses without losing the context of
all dimensions.

In addition to identifying correlations among different dimensions,
PCP can be used for finding and visualizing clusters [174]. Several ap-
plications and extensions have been proposed that, for example, allow
for visualizing large amounts of data [245] by using focus+context tech-
niques. Edge bundling is another option for dealing with high numbers
of sampling points [205] while GPU-based approaches address scalabil-
ity issues [324]. However, some limitations of PCP will be discussed in
Chapter 4.

In this work, PCPs are used to visualize spatial multi-field data. In
this case, spatial samples are considered as d-dimensional data points
where d corresponds to the number of fields available. While PCPs al-
low for visualizing multiple values of the different scalar fields, they
do not provide spatial context. This can be overcome by allowing for
brushing on the axes and linking the selection to a spatial rendering.
Besides simple brushing, a wide range of brushing techniques has been
proposed to facilitate the selection of sample points for different con-
texts [198, 288, 140].

30 ensemble visualization : state of the art and background

(a) (b)

Figure 2.4: Parallel coordinates for a 5-dimensional dataset. a) Between the first
two axes, we see an anti-correlation. The second and third axes are
correlated, while the other axes show no correlation. b) After reorder-
ing the axes, the patterns are hidden. The highlighted polylines in this
visualization are selected by brushing on the first axis.

2.3.4 Scatterplot Matrix

A scatterplot matrix (SPLOM) provides an alternative to visualize multi-
dimensional data. Here, n-dimensional data is shown as an n×n matrix,
with each matrix cell containing the scatterplot for a pair-wise combina-
tion of dimensions as shown in Figure 2.5. Thus, the SPLOM contains all
pair-wise combinations of the different dimensions and, therefore, also
allows for finding pair-wise correlations. However, in contrast to the PCP,
all pair-wise combinations are shown simultaneously, requiring no inter-
action to study different combinations. The diagonal of the matrix can
be used to show the parameter names instead of plotting one dimension
against itself. As the matrix is symmetric, it is also possible to only show
its part above (or below) the diagonal in order to avoid redundancy.

One downside of the SPLOM is its limited scalability. As the screen
space required scales quadratically with the number of dimensions that
should be shown, the SPLOM is limited in the number of dimensions
that could be displayed. One option to reduce the dimensionality and
also identify multi-dimensional patterns in the data, is applying PCA
and only showing the most relevant principal directions as discussed in
more detail in Chapter 5.

2.3.5 Functional Boxplots

The temporal variation at a spatial sample point of a simulation run can
be described as the discrete sampling of a continuous function. Func-
tional boxplots [328] generalize classical boxplots to functional data. To
achieve this goal, they use analogous statistical measures. Thus, one ob-

2.3 common techniques in ensemble visualization 31

Figure 2.5: The scatterplot matrix for the same 5-dimensional dataset as shown
in Figure 2.4 consists of scatterplots for all pair-wise combinations of
dimensions.

0 20 40 60 80 100
x

1.0

0.5

0.0

0.5

1.0

y

Figure 2.6: The functional boxplot provides an analogy to classical boxplots for
functional data, where band depth is used for ordering the functions.
The black line represents the median, the gray band is the 50% inter-
val, and the colored lines are outliers.

32 ensemble visualization : state of the art and background

tains a representation that considers the whole functional data. Com-
pared to alternatives, such as computing point-wise boxplots, functional
boxplots show features present in the data by considering functions over
the entire domain.

The first step is ordering the functions to compute the different statis-
tical values. This can be done using the concept of band depth or a modi-
fied band depth [218]. After computing the band depth of each function,
they are reordered by decreasing band depth. The first function, which
has the highest band depth, can be considered the most central curve.
For functional boxplots, this curve is used as the median curve. The first
half of the functions ordered by decreasing band depth is then used to
define the 50% band of the data and, thus, is analogous to the box in
classical boxplots [328]. The 50% region can be visually shown as an
envelope around the data. In traditional boxplots, the whiskers usually
represent the 1.5 interquartile range corresponding to the 50% region.
Therefore, extending this concept to functional boxplots is straightfor-
ward by extending the envelope of the 50% region with a factor of 1.5.
Then, each function outside this region can be considered an outlier.

Figure 2.6 shows an example of a functional boxplot where ten sine
curves with random noise are used. This figure already shows the sen-
sitivity to outliers as all functions outside of the 50% band are outliers.
While this problem can be reduced by increasing the factor for deter-
mining outliers, choosing an optimal factor for a given dataset is a non-
trivial task. In Chapters 9 and 10, we build upon functional boxplots
to show the uncertainty in the temporal evolution of different climate
variables.

Part II

PA R A M E T E R - S PA C E A N A LY S I S

3
S E G M E N TAT I O N E M B E D D I N G

Segmentations are commonly used in a wide variety of fields ranging
from image segmentations in medical imaging over segmentations of
climate data (see Chapter 9) to multi-dimensional parameter-space par-
titionings (see Chapter 4). While segmentations in two dimensions can
be visualized easily, for example, by color coding the different segments,
analyzing partitionings in three or more dimensions is challenging. Al-
ready in 3D, occlusion prevents obtaining a global overview of the com-
plete segmentation. For visually analyzing segmentations of any dimen-
sion, the sizes and neighborhood relations of the different segments are
of particular interest, for example, to study transitions between different
regions of parameter spaces. Especially in data with more than three di-
mensions, understanding the structure of the segmentation is very chal-
lenging.

Our proposed method supports the visual analysis of parameter-space
partitionings. Parameter spaces are commonly multi-dimensional. When
partitioning the parameter space in regions of similar behavior in the
simulation outcome, it is of interest how these regions are related to each
other and which region covers which part of the parameter space. This
also allows for identifying potentially interesting transitions between the
parameter-space segments. For example, in flow simulations one com-
monly differentiates between laminar and turbulent flow. These regions
and their transitions could be investigated in more detail in the follow-
ing steps.

We propose an algorithm for embedding multi-dimensional segmen-
tations in two dimensions while preserving the neighborhoods and the
segment and boundary sizes. For the embedding, we create a graph
structure of the segmentation, which we then embed in the 2D plane.
The resulting graph drawing is an initial configuration for an optimiza-
tion algorithm that adapts the segment and boundary sizes while pre-
serving the graph’s topology. As a result, we obtain an embedding pre-
serving the multi-dimensional features while avoiding occlusion. We

35

36 segmentation embedding

evaluate the influence of the different parameters in the optimization
function based on a set of quality criteria for the resulting embedding.
Additionally, we propose a rendering of the result that facilitates the
analysis and highlights the most important features of the embedding.
As proof of concept, we apply our approach to visualize 3D spatial do-
main segmentations. For applications to other real-world datasets, we
include the segmentation embedding into a visual analytics tool and di-
rectly embed it in the analysis workflow, see Chapter 4. In Chapter 9,
we also apply it for analyzing correlated regions in 3D ensemble data.
Note that depending on the domain, either the term segmentation or
partitioning is more common. In this chapter, these terms are used inter-
changeably.

After discussing related work to our approach in Section 3.1, we pro-
vide background on graph drawing and cellular automata in Section 3.2.
After a task definition in Section 3.3, an overview of our algorithm is
presented in Section 3.4 and details in Section 3.5 followed by an algo-
rithmic evaluation, see Section 3.6, the application to 3D segmentations,
see Section 3.7), and a discussion of the approach, see Section 3.8.

The results presented in this chapter are based on the following manu-
script:

M. Evers and L. Linsen, 2D Embeddings of Multi-dimensional
Partitionings, to be submitted

Both authors contributed to discussing ideas, writing, and editing the
manuscript. I developed and implemented the algorithm and created
the results.

3.1 related work

Segmentations of 3D volume data commonly occur in various domains,
including medical imaging. The segmentation is commonly visualized
using 2D slices or showing only a subset of the segments [278]. How-
ever, showing only individual segments or small sets of segments does
not provide a global overview of the segmentation structure. While vol-
ume renderings allow for visualizing some segmentations using suitable
transfer functions and opacity to reduce the occlusion problem, they do
not scale well to a larger number of segments. For higher-dimensional
spaces that, for example, occur as parameter spaces for simulation en-
sembles, the visualization becomes even more difficult. Different ap-
proaches for visually analyzing parameter spaces are discussed in Sec-
tion 2.2.1. However, none of the approaches provide a global overview
of the segmentation structure.

3.2 fundamentals 37

Segmentations can be represented as graphs, as proposed by Ren et
al. [284]. The authors aim at visualizing joint layouts for segmented
meshes but do not include the properties of the segments, like sizes. To
visualize the graph derived from the segmentation, one of various graph
drawing techniques [332, 357, 227, 354, 108, 81, 304, 155] can be selected.
Among the most common methods are force-directed layouts [179, 115],
layered graph drawing [325] and orthogonal layouts [27]. These tech-
niques all visualize graphs as node-link diagrams.

As alternative graph visualizations, space-filling techniques have been
proposed. Weighted trees can be encoded as treemaps [312]. Treemaps
cannot be applied to our problem as the graphs derived from the seg-
mentation are not trees. Techniques focussing on visualizing clusterings
like Bubble-Sets [67], LineSets [11], and KelpFusion [229] are also re-
lated to our problem. These methods show regions around vertices while
GMap [119, 160] creates a map-like layout that might be fragmented. To
overcome this problem, either the clustering or the layout can be modi-
fied [193]. However, the topology is not necessarily preserved such that
there are not always common boundaries if there are connecting edges
between two clusters. A similar problem is targeted by MapSets [92],
which has the disadvantage of causing complex regional layouts. The
clustered graph visualization method by Wu et al. [382] deals with ver-
tices belonging to more than one cluster by drawing connections on
top of the layout. As these connections differ from the visualization of
the clusters, they also induce perceived differences. For our approach,
edge crossings in non-planar graphs should not be specially highlighted,
which is why this visual encoding is not desirable for our problem.

Like our approach, cartograms aim to preserve areas for a given topol-
ogy [246]. Usually, the layouts in the context of cartograms are planar
and do not contain crossings, as they commonly occur in our cases if
the original dimension is at least 3D. There are also methods for pla-
nar graphs that encode neighborhoods as shared boundaries [9, 391] but
do not generalize to non-planar graphs. Overall, none of the discussed
approaches is suitable for visualizing a multi-dimensional embedding,
which can be described as a (potentially non-planar) graph where areas
and boundary sizes are preserved in the visual representation.

3.2 fundamentals

Our approach strongly builds on orthogonal graph drawing and cellular
automata. Therefore, in this section, we briefly introduce the fundamen-
tals of our work.

38 segmentation embedding

3.2.1 Orthogonal Graph Drawing

An undirected graph G = (V ,E) is defined by a finite set of vertices V

and edges E where each edge e = {u, v} ∈ E consists of an unordered
pair of vertices u, v ∈ V . A graph drawing is the embedding of a graph
in a 2D plane. A planar graph is a connected graph that can be drawn
without edge crossings. A graph drawing of a planar graph divides the
drawing plane into different regions, which are referred to as faces. Each
face can be uniquely described by the sequence of adjacent edges. The
external face of the graph is the only unbound face as it is only bound
by edges to the inside. Thus, it corresponds to the outside of a 2D graph
drawing.

Orthogonal graph drawings are characterized by allowing only verti-
cal and horizontal edges [86]. These kinds of drawings have the advan-
tage of having a relatively clean layout due to the few edge directions
and angles of 90◦. Orthogonal graphs are, for example, applied to very
large-scale integration (VLSI) design to optimize the layout of the wires.
Standard optimization criteria include minimizing the number of edge
bends or edge crossings where the latter is relevant to our approach.

The so-called topology-shape-metrics approach minimizes the num-
ber of edge crossings and also keeps the number of edge bends low [331,
27, 333, 80]. As edge crossing minimization is an NP-hard problem, this
approach provides a suitable approximation for the graph drawing. This
group of algorithms uses a three-step approach:

1. Planarization: The first step defines the topology of the graph draw-
ing where two drawings have the same topology if one drawing
can be obtained from the other by continuous deformation without
altering the edge order.

2. Orthogonalization: This step defines the shape of the drawing. Two
graph drawings have the same shape if one can be obtained from
the other by modifying only the lengths of the edge segments.

3. Compaction: The last step defines the metrics, namely the coordi-
nates of the vertices and edge bends. Two drawings contain the
same metrics if they are equivalent up to rotation and translation.

The planarization step mainly aims at minimizing the number of edge
crossings. As it is executed first, the minimization of edge crossings is
the priority of the graph drawing algorithm. In the following, we will
discuss the different steps and the relevant algorithms in more detail.

3.2 fundamentals 39

3.2.1.1 Planarization

The result of the planarization step is a planar embedding [80] which
is an embedding of a graph without any edge crossings. This can be
achieved for non-planar graphs by replacing the edge crossings with
dummy vertices. Note that a planar embedding is a combinatorial de-
scription where the sequence of edges is defined for each face, but the
vertices do not yet contain coordinates.

To obtain such a planarization layout and minimize the number of
crossings, one can start by computing the maximum planar subgraph
and then reinserting the remaining edges. In this step, each crossing is
replaced by a dummy vertex.

Computing the maximum planar subgraph is also an NP-hard prob-
lem. A range of approximation algorithms exist, but as we tested two of
them, these will be discussed in more detail.

Triangle-based algorithm: This algorithm is based on computing the
maximum number of triangles, which are three connected vertices, in a
given graph and building a planar subgraph based on them [58]. In the
first step of the algorithm, as many diamond subgraphs as possible are
identified where a diamond consists of two triangles sharing an edge. In
the second step, as many triangles as possible are added to the subgraph.
This procedure might lead to unconnected subgraphs, which are finally
connected to each other. It can be shown that this algorithm leads to an
approximation factor of 13

33 for the maximum planar subgraph problem.
PQ-tree algorithm: Alternatively, the maximum planar subgraph can

be computed with the help of a PQ-tree [170] where a PQ-tree is a
data structure that represents permutations. Even though the theoret-
ical worst-case running time of this algorithm is O(|V |2), it is usually
very fast in practice [332]. This also allows for running the algorithm
multiple times to improve the outcome of the algorithm. In each of the
runs, different orders for inserting the edges to the tree can be used.

Different methods exist for reinserting the additional edges that were
not part of the planar subgraph. They can be categorized into two groups:
insert edges directly or reinsert stars which are vertices including inci-
dent edges. A recent study showed that mixed insertion works best [63].
The mixed insertion attempts to reinsert at least one endpoint of each
edge that still needs to be included in the planar subgraph via star rein-
sertion. For this purpose, the corresponding end vertex is removed and
reinserted including all incident edges. However, only vertices that are
not cut vertices are chosen for reinsertion to avoid unconnected graphs.
A cut vertex is defined as a vertex whose removal would lead to more
connected components in the graph. If both vertices of the edge to be

40 segmentation embedding

inserted correspond to cut vertices, the edge is inserted using the tradi-
tional edge insertion method.

Planarized graphs can be embedded using a Boyer-Myrvold planar
embedding [47]. The basic idea of the algorithm is to add the edges
one by one while preserving the planarity of the graph. As a result, one
obtains a combinatorial embedding, an embedding where the order of
edges is defined for each vertex. However, the vertices of a combinato-
rial embedding do not have positions. While the different faces in the
embedding are defined by the edge order, it does not contain a desig-
nated external face which needs to be defined for a unique definition of
the embedding.

3.2.1.2 Orthogonalization and Compaction

To define the shape of the graph drawing, a list of angles is computed
for each edge, but the vertices still do not contain coordinates. One way
of computing the orthogonalization implemented in the Open Graph
Drawing Framework (ogdf) [62] is based on the bend layout minimizing
algorithm proposed by Tamassia [331]. However, as the original algo-
rithm only works on graphs with a maximum vertex degree of 4, the
algorithm implemented in ogdf is adapted to work on general planar
(or planarized) graphs. This algorithm uses the flow through the net-
work to find a representation with a minimum number of bends. The
high-degree nodes are placed inside boxes to generalize the algorithm
to vertices with a degree higher than 4, and the edges are routed toward
the incident position on the box.

Besides computing the coordinates for vertices and edge bends, the
dummy vertices introduced in the planarization step are removed and
replaced by edge crossings in the final compaction step. One option for
the compaction step is computing the minimum-cost flow in the dual
graph [191].

3.2.2 Cellular Automata

Cellular automata can be used for different applications, ranging from
modeling in statistical mechanics [375] over biological modeling [97] to
the computation of cartograms [84]. In this chapter, a cellular automaton
is used to optimize the segments and boundary sizes. A cellular automa-
ton consists of three different parts [64]:

1. A regular lattice of cells.

2. A set of states Φ. Each cell has exactly one state at each timestep.

3.3 visualization tasks 41

von Neumann Moore

Figure 3.1: The von Neumann neighborhood and the Moore neighborhood of the
central cell (red) are marked with a black outline.

3. A set of rules R which define the transition between states based
on a given cell’s neighborhood in the previous timestep. In the case
of probabilistic cellular automata, a rule can also contain a random
term.

While different neighborhood definitions can be considered, the most
common ones in 2D automata are the von Neumann and the Moore
neighborhoods, as shown schematically in Figure 3.1. The von Neumann
neighborhood only consists of the four closest neighbors and is com-
monly known as the 4-neighborhood in computer graphics. The Moore
neighborhood also includes the four neighbors on the diagonals and cor-
responds to the 8-neighborhood in the field of computer graphics. We
refer to Chopard et al. [64] for a more detailed discussion of cellular
automata.

3.3 visualization tasks

The visual encoding presented in this chapter should represent a multi-
dimensional segmentation with its most important features. As we target
the analysis of simulation ensembles, we derive tasks based on analyz-
ing multi-dimensional parameter spaces as an application example. We
identify the following set of tasks that the final visualization should ful-
fill:

T3.1 Preserving the topology. The topology of the segmentation is defined
by neighborhood relationships between the segments. To under-
stand the segmentation of the multi-dimensional space, it is impor-
tant to preserve the topological structure in the low-dimensional
embedding. For example, in parameter-space analysis, the topolog-
ical structure directly reveals between which segments transitions
are possible.

T3.2 Representing the segment sizes. The sizes of multi-dimensional seg-
ments might vary significantly. Therefore, they should also be rep-

42 segmentation embedding

resented in the lower-dimensional embedding. When analyzing
a multi-dimensional parameter space, the segment sizes encode
which portion of the parameter space corresponds to the respec-
tive segment. Assuming that the segmentation of the parameter
space is created based on the similarity of the simulation output,
the segment sizes also convey how frequently the characteristic
behavior for the corresponding segment occurs. Visualizing the
segment sizes allows, for example, to see whether all segments are
similar in size or whether there are one or several segments that
are significantly larger or smaller than the rest.

T3.3 Representing the segment boundary sizes. The boundaries between
segments allow for transitions between the different segments. For
example, in the case of parameter spaces, the sizes of the bound-
aries indicate how large the parameter ranges are that allow for
direct transitions between the two considered segments. Addition-
ally, the sizes of the joint segment boundary indicate how related
the corresponding segments are and, thus, enrich the topological
information. Based on the encoded segment sizes, it is possible
to estimate whether there is a strong connection between the seg-
ments, which corresponds to a large boundary size, or the seg-
ments are only slightly connected. This information is also useful
when interpreting the topology of the segmentation.

Note that we do not consider the shapes of the segments as representing
multi-dimensional shapes in a single 2D embedding is infeasible. In the
following, we will discuss how we address these visualization tasks.

3.4 overview

The algorithm presented in this chapter provides a 2D visualization of a
multi-dimensional segmentation or partitioning. We preserve the topol-
ogy (task T3.1) by using a graph. Its embedding is optimized using a cel-
lular automaton to encode the segment and boundary sizes (tasks T3.2
and T3.3). The different steps of the algorithm are shown in Figure 3.2.

We consider a segmented, n-dimensional volume where each con-
nected component is considered as its segment labeled with a unique ID.
Assuming a discrete sampling of the multi-dimensional domain, each
spatial sample point is assigned to exactly one segment. We assume that
the volume is sampled on a regular grid. Otherwise, a regular grid can
be obtained by resampling.

The structure of the segmentation S can be described as a weighted,
undirected graph G = (V ,E) with vertices V and edges E. Each vertex

3.4 overview 43

Graph Embedding

Cellular AutomatonRendering

Multi-dimensional
Partitioning

Figure 3.2: A multi-dimensional partitioning can be represented as a graph. Start-
ing from the embedding of this graph, a cellular automaton approach
is used for preserving the areas and boundary sizes. Finally, we ren-
der the different segments to visually encode the different features
of the embedding, including segment boundaries, separating regions,
and edge crossings.

vi ∈ V represents a segment si ∈ S. An edge {vi, vj} ∈ E corresponds
to a shared boundary between segments si, sj ∈ S. The border of the
original domain also influences the topological structure. To consider it,
we insert an additional vertex vb representing the outside of the domain.
An edge {vi, vb} ∈ E is added to the graph for each segment si connected
to the outer boundary to preserve the topology.

Using the regular grid structure of the input data, we define two seg-
ments to share a boundary if and only if at least two grid cells of the
corresponding segments are von Neumann neighbors. Thus, for a 3D
domain, these cells share a face and cells that only share a vertex or
an edge are not considered to have a shared boundary. One main goal
of our approach is preserving the areas and boundary sizes. To include
this information in the graph, we include the size Asi,nD of a segment
si as a weight for vertex vi. The segment’s size Asi,nD is computed by
counting the number of grid cells that belong to segment si. Each edge
{vi, vj} is weighted by the size of the boundary L(si,sj),nD, which corre-
sponds to the number of cells that are neighbors in the sense of the von
Neumann neighborhood.

The graph G is embedded in 2D, where we aim at minimizing edge
crossings (see Section 3.5.1). This graph drawing preserves the segmen-
tation’s topology but not the area and boundary sizes. Therefore, we

44 segmentation embedding

apply a cellular automaton for which we use the graph drawing as an
input (see Section 3.5.2). The cellular automaton preserves the topolog-
ical structure encoded by the graph but optimizes the representation
for also encoding the area and boundary sizes to fulfill the visualization
tasks T3.1 to T3.3. To visually encode the resulting embedding, we apply
a rendering described in Section 3.5.3.

3.5 segmentation embedding

Based on the graph G representing the segmentation, we can compute a
2D embedding of the segmentation that fulfills tasks T3.1 to T3.3.

3.5.1 Graph Embedding

A graph embedding is used as the initial configuration for the cellular
automaton. To keep the visualization as simple as possible, we want
to minimize the edge crossings in the embedding. In addition to mak-
ing the graph representation and the final visualization more complex,
edge crossings represent an embedding artifact that is not present in the
multi-dimensional space. As the problem of minimizing the number of
edge crossings is NP-complete [121], we use the planarization approach
described in Section 3.2.1 as an approximation to obtain an orthogonal
graph drawing.

Even though force-based graph drawings often show relatively low
numbers of edge crossings, they do not explicitly aim at minimizing
them. Thus, even drawings of planar graphs might contain edge cross-
ings [122]. While additional vertices like the boundary vertex can be
included by adding constraints, this might further complicate the lay-
out.

An orthogonal layout containing only horizontal and vertical edges
facilitates the rasterization required to obtain the initial configuration
for the cellular automaton. For example, diagonal edge crossings would
otherwise induce many special cases to be considered. After embedding
the graph, we remove the boundary vertex to maintain only the vertices
representing segments. To ensure that the initial configuration for the
cellular automaton contains the same topology as the multi-dimensional
segmentation, we connect all vertices with an edge to the boundary ver-
tex to the outer boundary of the domain.

We use the Open Graph Drawing Framework (ogdf) [62] to compute
the graph embedding. This library provides an implementation of the
topology-shape-metrics approach where each step can be easily cus-
tomized. We mainly follow the approach discussed in Section 3.2.1, us-

3.5 segmentation embedding 45

ing the algorithms presented in that section. The choice of the planar
subgraph significantly influences the quality of the graph drawing. We
compare the triangle-based approach to the approach using PQ-trees in
Section 3.6. However, our graph drawing should follow the constraint
that the boundary vertex should lie on the external face to facilitate the
connections between the neighboring vertices and the boundary. Oth-
erwise, the number of edge crossings might increase significantly. The
external face can be defined after a combinatorial embedding is com-
puted. To realize the constraint, we define the external face as one of
the faces that contains the boundary node. The number of faces contain-
ing the boundary vertex equals the degree of this vertex. Therefore, we
could obtain different embeddings that fulfill the criterion above.

Due to space constraints, connecting the vertices representing the seg-
ments to the domain’s boundary might introduce additional edge cross-
ings. Thus, we compute all embeddings where the boundary lies on the
external face and choose the one minimizing the number of crossings.

3.5.2 Cellular Automaton

Based on the previously defined graph embedding, we want to create
a visual representation that also preserves the areas of the segments
and the sizes of the common boundaries. More concretely, we want to
optimize the following criteria:

C3.1 Expand the graph vertices vi ∈ V to 2D segments whose relative
area corresponds to the vertex weight Asi,nD that represents the
size in the multi-dimensional space (see task T3.2).

C3.2 Optimize the size of the boundary representing edge eij = {vi, vj} ∈
E such that the length of the joint boundary between the 2D seg-
ments representing vi and vj corresponds to edge weight L(si,sj),nD

and thus to the boundary size in multi-dimensional space (see task
T3.3).

As optimizing areas is closely related to cartograms, we build our ap-
proach on the cellular automata cartogram approach presented by Dor-
ling [84]. Building upon a cellular automaton-based approach gives us
a large flexibility for adapting it to our optimization criteria, especially
preserving the boundary sizes. As we do not have any initial shapes
to preserve as in traditional cartograms, it is not an issue that Dor-
ling’s approach does not preserve shapes [246]. Preserving shapes of
n-dimensional segments embedded in the 2D space is infeasible.

46 segmentation embedding

3.5.2.1 Initial Configuration

We need to define the three parts of a cellular automaton, as described
in Section 3.2.2. We first need to determine the grid resolution for defin-
ing a regular lattice of cells. For preserving the topology of the graph,
it is important that the edges are separated by at least one cell. Here,
we use the extent of the graph embedding, assuming a size of 20× 20

cells for the vertices and a minimum separation of 20 cells between the
vertices. A scaling factor f provides enough space for all edges and al-
lows for a separating cell between the different edges. As we only use
one border vertex vb, it might have a high degree. Therefore, we use
the degree deg(vb) of this vertex to heuristically set the scaling factor to
f = max(2,

√
deg(vb)). The square root prevents the factor from grow-

ing too quickly because the number of cells grows quadratically with
this factor, and a large number of cells increases the computation times
and memory consumption significantly. In addition to the lattice used to
create the visualization, we add a border of cells around it, representing
the external boundary of the original domain.

Second, we need to define a set of states Φ. For this automaton, we de-
fine the possible states as the segmentation indices, which we assume to
be strictly positive. Additionally, the state 0 represents cells not assigned
to any segment and, in the following, referred to as background cells.
The state −1 is assigned to the other cells representing the boundary
and therefore defines the boundary conditions of the cellular automa-
ton. Our approach can be directly applied to arbitrary domain shapes
of the input data by labeling all grid cells belonging to no segments
with −1. Cells representing edge crossings get assigned the state −2. For
simplicity, we will use si for the segment and its ID. Thus, we obtain
Φ = {si|i = 1, ..., |S|} ∪ {0,−1,−2} where |S| denotes the number of seg-
ments.

We can use a naive line drawing algorithm to assign cells to the edges
of the graph drawing, as the orthogonal graph drawing, by definition,
does not contain diagonal lines. Each edge gets the width of one cell. For
routing the edges, we use the bending points, which are also provided
by the graph drawing of the ogdf-framework. We start by drawing the
edges connecting the vertices representing segments and, thus, do not
involve the border vertex. Out of all line segments that are drawn for a
given edge {vi, vj}, the cells belonging to the first half of the segments
get assigned the ID of the segment corresponding to vertex vi as a state
while the second half gets assigned the ID corresponding to vertex vj.
The central line segment is split between both states. Here we apply a
simple heuristic instead of more sophisticated methods like splitting the

3.5 segmentation embedding 47

edge by arc length because we provide an initial state for a following
optimization which is not sensible to the exact division of the edges. If
an edge crossing is noticed when drawing the edges, the corresponding
crossing cell gets assigned the state −2. Treating edge crossings sepa-
rately allows us to preserve the topology in the relaxation phase. After
drawing these edges, we initialize the cells belonging to each vertex ex-
cept the boundary vertex by assigning the corresponding segment ID to
a square of cells.

Finally, the connections to the domain boundary, which are repre-
sented by the edges {vi, vb}, need to be included. All cells belonging
to this edge get assigned the ID corresponding to vi. By default, we
draw an edge by first following the edge routing until the boundary of
the region, where the vertex representing vb would be drawn, is reached.
From here, we connect to the domain boundary of the cellular automa-
ton’s cell lattice to ensure that each segment that is connected to the
domain boundary in multi-dimensional space is also connected to the
domain boundary in the 2D embedding. This commonly works well
because vb was placed on the exterior face by definition of the graph
embedding. An offset is added to the last bending point to avoid over-
laps in the edge drawings. This offset varies between the edges leading
to the border. However, if vertex vi is closer to the cellular automaton’s
boundary than two times a vertex’s size, no other vertex could be placed
between vi and the boundary. This is the case because we set the min-
imum distance between the vertices to the same value as the spatial
extent of the vertices. Thus, we can directly connect vi to the nearest
boundary.

Vertices or edges going in the same direction as the current drawn
edge provide obstacles that an edge crossing cannot overcome. For these
cases, the edge is re-routed by introducing an offset of 2 cells until the
edge’s destination can be reached. However, this procedure might not
always lead to a possible solution. One option would be opting for a
significantly more complex edge routing. As this should be avoided, we
instead neglect this graph drawing and choose one of the remaining
drawings created by considering all faces including the boundary vertex
vb as an external face. Among all embeddings that correctly preserve the
topology, we choose the one minimizing the number of edge crossings.

To reduce the number of cells, we remove all duplicate rows and
columns of cells in a post-processing step. An example for the initial
configuration of the cellular automaton after removing duplicates is pre-
sented in Figure 3.3. The last part of the cellular automaton definition
is the definition of a set of rules. The derivation of these rules will be
detailed in the following.

48 segmentation embedding

1

2 3

4

5

6 78

Figure 3.3: The graph drawing provides the initial configuration for the cellular
automaton. Cells not belonging to any segment get assigned the ID
0 (light gray), while cells representing edge crossings get assigned
the ID −2 (black). The cells belonging to segments get assigned the
corresponding segment ID (shown as numbers) as a state.

3.5.2.2 Optimization Criteria

The optimization criteria, namely the preservation of areas (C3.1) and
boundary sizes (C3.2), govern the definition of the set of rules. The devi-
ation dA,s describes the deviation of the segment’s relative size in the 2D
embedding from its relative size in the multi-dimensional space. Thus,
the deviation dA,s is minimized to optimize for area preservation (C3.1).
For segment s, the area deviation is defined as

dA,s =
As,nD

AnD
−

As,2D

A2D
, (3.1)

where As,nD denotes the size of segment s in the n-dimensional space,
AnD corresponds to the overall number of cells in the n-dimensional
domain, As,2D is the number of cells assigned to segment s in the cellu-
lar automaton and A2D the total number of cells included in the cellular
automaton and, thus, the total 2D domain size. If dA,s > 0, the segment
s needs to expand, while dA,s < 0 indicates that the corresponding
segment needs to shrink to represent the relative size of the segment
accurately.

The deviation is computed for each segment individually. Thus, we
can define the first rule as follows:

R3.1 A cell in state si should change its state if at least one cell in its
von Neumann neighborhood is in state sj and dA,sj

> dA,si
.

As a second criterion, we aim to optimize the deviations between the
relative boundary sizes (C3.2). In the following, we refer to the boundary
sizes as boundary lengths to avoid confusion with the segment sizes.
Nevertheless, these sizes are only lengths in 2D but, for example, areas

3.5 segmentation embedding 49

in 3D and volumes in 4D. Note that the boundary length deviation is
not unique to a segment but depends on the pair of segments that form
the boundary. Thus, the boundary length deviation between segments
si and sj can be defined as

dL,(si,sj) =
L(si,sj),nD

LnD
−

L(si,sj),2D

L2D
, (3.2)

where L(si,sj),nD is the boundary length between segments si and sj in
the nD space, LnD is the sum of all boundary lengths in nD, L(si,sj),2D
denotes the boundary lengths between si and sj in the 2D embedding
and L2D is the sum of all boundary lengths in the 2D space. Analogous
to the sizes, dL,(si,sj) > 0 means that the boundary length needs to
increase while it should decrease for dL,(si,sj) < 0.

For defining a rule on when a cell should change, it needs to be con-
sidered that we obtain one deviation value per pair of segments that
share a boundary. Each cell has four von Neumann neighbors, so there
could be up to four boundary deviation values per cell. Additionally,
changing the state of the cell does not necessarily change the boundary
between the corresponding segments. To consider these two points, we
compute for each neighboring segment how much the boundary length
L(si,sj),2D would vary if the state of the cell changes from si to sj. The
change in boundary length can be computed as

∆L(si,sj) = Nsi
−Nsj

,

where Nsi
and Nsj

denote the number of neighbors of the cell under
consideration that belong to segment si and sj, respectively. If ∆L(si,sj) <

0, the boundary length would be reduced, and it would be increased if
∆L(si,sj) > 0. Thus, we obtain the desired behavior regarding the change
in boundary length if and only if the sign of ∆L(si,sj) equals the sign of
dL,(si,sj). Based on this consideration, we can define the second rule for
the cellular automaton:

R3.2 A cell in state si should change its state if dL,(si,sj)∆L(si,sj) > 0

for any state sj of a cell in its von Neumann neighborhood.

These two rules consider the optimization criteria defined above, but
they do not consider the segments’ shapes. More compact shapes are
generally preferable as they are easier to interpret. Therefore, we also
include a so-called security factor introduced by Dorling [84]. The se-
curity factor is computed for each cell and measures how exposed the
cell is with respect to the other cells belonging to the same segment.
To compute the security factor, the number of von Neumann neighbors
belonging to the same segment is multiplied by 3, and the number of

50 segmentation embedding

neighbors on the diagonal that belong to the same segment is added.
Therefore, the security factor ranges from 0 (for isolated cells) to 16 for
cells surrounded by cells of the same segment. Based on the security
factor, we define a third rule:

R3.3 A cell should only change if R3.1 or R3.2 is fulfilled and the secu-
rity factor lies below a threshold of 11.

Note that the threshold of the security factor chosen here differs from
that chosen by Dorling [84]. A detailed investigation of the threshold
for the security factor and the reasoning for this choice is presented in
Section 3.6.

The previous rules define if a cell should change its state but not yet
the state it should be in after the transition. Therefore, we define a fourth
rule:

R3.4 A cell in state si should change to state sj if R3.3 is fulfilled and
sj = arg maxsk∈SvN

(max(d̂L,(si,sk),dA,sk
)), where d̂L,(si,sk) =

|dL,(si,sk)| if dL,(si,sk)∆L(si,sk) > 0, and d̂L,(si,sk) = 0 otherwise.
Here, SvN is the set of states in the von Neumann neighborhood
of the segment.

The background cells present in the initial configuration should vanish
over the iterations of the algorithm. This can be achieved by setting the
area deviation of the background to −1, which is the minimum value
that the area deviation could take. Thus, any segment would spread in
background regions, causing the number of background cells to reduce
over time.

3.5.2.3 Topology Preservation

While the previously defined rules optimized for area and boundary
lengths preservation and take the shape of the segments into account,
they do not ensure topology preservation (see task T3.1). Therefore, we
follow an adapted version of Dorling’s topology preservation methodol-
ogy [84]: Counting the number of segment changes when going around
the cell in its Moore neighborhood (see Figure 3.4) allows for determin-
ing the criticality of the cell. A cell is considered critical if changing
the state to one of its neighbors violates the topology preservation even
though changing to another neighbor’s state might preserve it. The cell
is critical for preserving the topology if the segment labels change more
than 3 times. In this case, the cell should not be changed, independent
of rules R3.1 to R3.4. As we add an additional border of vertices with
the fixed index −1, we also ensure topology preservation on the bound-
ary. To avoid vanishing segments, isolated cells (security factor of 0)

3.5 segmentation embedding 51

Topology preserved Topology not preserved

Figure 3.4: The topology of the graph might be violated if the number of segment
changes (dark red crosses) when traversing the Moore neighborhood
of the central cell (gray border) is > 3. Otherwise, the topology is
preserved.

are not allowed to disappear. However, an exception to this rule is the
background. The size of the background segments should shrink and,
if topology preservation allows for it, vanish entirely. Therefore, back-
ground cells with a security factor of 0 are also allowed to vanish.

However, the topology preservation criterion might prohibit the van-
ishing of background cells. Therefore, the background cells marked as
critical are checked separately. One can directly determine if the cell’s
new state would destroy the topology by checking the new boundaries
in the original graph. However, it is not always possible to remove all
background cells while preserving the topology. This is, for example,
the case for complex, non-planar graphs. In these cases, we keep the
background cells as separating boundaries and refer to them as separa-
tors. To distinguish them from segments, we treat them differently in the
visualization (see Section 3.5.3). Cells in a state −2 that indicate edge
crossings can never change. Due to the crossing, they contain at least
four changes between segments when traversing the surrounding cells.

3.5.2.4 Iterative Optimization

Based on the definition of the cellular automaton in the previous sec-
tions, the 2D embedding is computed iteratively. However, changing all
cells at once might lead to conflicts as neighboring cells can change si-
multaneously. In this case, the topology preservation, as described in the
previous section, would not hold. To tackle this problem, Dorling [84]
proposes to use a checkerboard pattern. In this way, the von Neumann
neighborhood will be preserved. However, to avoid misinterpretations,
we want to preserve the topology in the Moore neighborhood and, thus,
avoid diagonal neighborhoods that are not represented by the graph.
The checkerboard pattern does not ensure this. Therefore, we apply a

52 segmentation embedding

Figure 3.5: We superimpose a pattern to avoid simultaneous changes of adjacent
cells, which could violate the topology. When overlying this pattern,
only the cells colored in black are changed.

pattern as shown in Figure 3.5 that neither allows direct nor diagonal
neighbors to change in the same timestep. In each iteration, the pattern
is shifted. In this way, each cell could change its state every fourth itera-
tion.

The user can set the number of iterations. However, the cellular au-
tomaton should terminate early based on a convergence criterion. We
could consider the algorithm converged if no changes occur any more.
Therefore, after each iteration, we check if any cell varied. As each cell
could only change every fourth iteration, we require four iterations with-
out changes for the algorithm to converge.

Even though neighboring cells cannot change simultaneously, several
cells still change at once, which could lead to an oscillation without
further improvement. Therefore, we introduce damping by defining a
state’s probability of switching. As the damping should get stronger
with increased accuracy in representing the segment and boundary sizes,
we define the probability as the absolute value of the maximal deviation
of either the areas or the boundaries. To improve the results, we intro-
duce a user-defined scaling factor g applied to the damping. Note that
a higher value of g indicates a higher tolerance to the deviation and,
thus, a weaker damping. To take the stochastic nature of the cellular
automaton into account, we increase the threshold for stopping to ten
iterations in case the damping is used. However, this threshold might
also be adapted by users.

The original node-link diagram layout of the graph might include
some unnecessary edge crossings when showing segments in a dense
visualization. Two different cases might occur:

1. Two segments could cross multiple times, as shown for the light
green and cyan segments in Figure 3.6. When removing one of
these crossings, one needs to ensure that the segments are not split.

3.5 segmentation embedding 53

(a) Before. (b) After.

Figure 3.6: Crossings between segments that become unnecessary can be removed
to improve the embedding. Crossings can become unnecessary in case
of duplicate crossings (gray circles) or if the topology of the segment
is already covered by other parts of the segment (black circles).

2. An edge crossing was needed in the graph embedding to ensure
a connection to another segment or the boundary. While the back-
ground vanishes, it might happen that this connection is also made
in other parts of the segment. In this case, the original edge cross-
ing and the corresponding part of the segment can be removed
entirely. This case is shown with black circles in Figure 3.6. When
removing the part of the segment and the edge crossing, the state
of the corresponding cells is set to 0, corresponding to the back-
ground cells. Thus, we obtain additional space for the other seg-
ments to spread further.

However, testing the conditions for removal is computationally expen-
sive. Therefore, we only perform it in a user-defined interval which we
choose as every 300th iteration for the results presented here.

Without further modifications, the positions of the edge crossings
are fixed. However, this might lead to unnecessary complex layouts, as
shown in Figure 3.7a. Figure 3.7b shows that the layout significantly im-
proves if the edge crossings could be moved as the segments are more
compact and show less line-like structures. For obtaining more compact
segments, we aim at moving the crossings towards the barycenters of
the segments. The crossings are moved by switching the state of the cell
in state −2 to the state of the neighboring cell. Before performing the

54 segmentation embedding

(a) Fixed crossing positions. (b) Flexible crossing positions.

Figure 3.7: Fixed positions of the crossings might lead to unnecessary complex
layouts (a). By moving the crossings towards the barycenter of the
segment, one obtains more compact segments (b). Both examples were
created by applying the cellular automaton on the same initialization.

movement, it is checked if the topology is preserved. Thus, the crossings
are only moved if a horizontal or vertical movement is possible without
further changes.

3.5.3 Segmentation Visualization

Segmentations in 2D are commonly visualized by assigning different col-
ors to the different segments. We follow a similar approach but aim for
a color map-independent visualization. The colors may be chosen based
on a color map and optimized to, for example, show distinguishable col-
ors among neighboring segments. However, color can also be used to
encode further information like values assigned to the segments in the
multi-dimensional space or to encode the area deviations of the embed-
ding to visualize embedding artifacts. As the latter cases might lead to
similar colors of segments with a joint boundary, we want to empha-
size the segment boundaries independent of the concretely chosen color
coding.

For visualizing the segment boundaries, we apply a shading approach
inspired by cushion treemaps [352, 336], which provides a large flexibil-
ity in the choice of color. We further aim at adapting the shading to
visually differentiate the separators (regions of background cells that re-
main to separate different segments) from the actual segments. As our
segmentations are not hierarchical and we aim at a relatively simple vi-
sualization without additional clutter, we want to keep the inner part of
the segment flat. Like cushion treemaps, we use quadratic functions, but

3.5 segmentation embedding 55

1

-1

0z(
x
)

Separator

Segment 1 Segment 2 Segment 3

Figure 3.8: The height profile for the shading applied to the segmentation should
contain plateaus in the central parts of the segments. Separators are
modeled as valleys to distinguish them visually. For this graph, we set
the height h = 1 and the width for height changes w = 0.5r where
r is the number of pixels used for each cellular automaton cell.

for achieving flat regions of varying size, we use piecewise definitions
of the height function as shown for the 1D case in Figure 3.8. The height
function zi(x) uses an increase of the height for the segments but a de-
crease for the separators. We color the separators clearly distinguishable
from the color map applied to the segments for additional differentia-
tion. In all examples presented in this chapter, we chose white for the
separators, as white was absent in any color maps used.

As x and y directions are treated identically, we describe our shading
based on the x-direction of the automaton. In the following, we can also
treat each cell of the cellular automaton as a superpixel of an image. For
defining the height function zi(x) we apply the constraints

zi(xi,1) = 0 ,

zi(xi,1 +w) = h , (3.3)
dzi
dx

(xi,1 +w) = 0 . (3.4)

The position where segment si starts is denoted as xi,1, w is the width of
the region where the function increases quadratically, and h is the height
of the central parts of the segments. The constraints for the decrease at
the end of the segment are analogous.

The separators are modeled as valleys with a negative height, as shown
in Figure 3.8. This results in the following constraints:

zv(xv,2 −w) = −h ,
dzv
dx

(xv,2 −w) = 0 , (3.5)

dzv
dx

(xv,2) =
dzi
dx

(xi,1) . (3.6)

56 segmentation embedding

Crossing

Separator

Figure 3.9: The shading of segments, separators, and edge crossings allows for
visually distinguishing them, even independent of the color coding.

The separator v ends at position xv,2. The constraints for the start of the
separator are analogous. These constraints lead to the coefficients a, b
and c for the segment or separator ranging from x1 to x2 in x-direction
and from y1 to y2 in y-direction:

a =

0 x1 +w < x < x2 −w

−γh
w2 otherwise

,

b =


2γh
w2 (x1 +w) x1 ⩽ x ⩽ x1 +w

0 x1 +w < x < x2 −w

2γh
w2 (x2 −w) x2 −w ⩽ x ⩽ x2

,

c =


2γh
w2 (y1 +w) y1 ⩽ y ⩽ y1 +w

0 y1 +w < y < y2 −w

2γh
w2 (y2 −w) y2 −w ⩽ y ⩽ y2

,

where γ is a parameter used to differentiate between segments (γ = 1)
and separators (γ = −1). These coefficients can then be used to compute
the normals for the shading as (2ax+ b, 2ay+ c, 1).

In this way, we can visualize segments as well as separators. We also
want an intuitive visual encoding for showing the edge crossings. It
should be clear that there is a crossing and should not be confused with
boundaries. Additionally, it should not pop out too much, as the cross-
ings should not be highlighted. Based on these considerations, we decide
to use a visual encoding that resembles a cross as shown in Figure 3.9
where we can see that this visualization is also applicable in case all

3.6 algorithmic evaluation 57

segments show the same color. This is achieved using shading on the
diagonals where we set the normal vector to (0.1, 0.1, 1). When applying
color coding with different colors, the segments are colored according
to the color of the adjacent segment. Figure 3.9 shows that the shading
of the segment boundaries also allows for clearly separating the bound-
aries independent of the color coding.

3.6 algorithmic evaluation

To study the influence of the different optimization criteria as well as the
scalability of the algorithm, we perform an algorithmic evaluation based
on synthetic datasets. Here we opt for synthetic datasets as they allow
us to adapt the properties of the data, like the dimensionality and the
number of segments, based on our needs.

We define a dataset D1 that should allow for creating segmentations
with a defined number of segments in varying shapes and a user-defined
resolution. Therefore, random seed points are used to grow regions with
a random growth rate. Here, each unassigned cell is added to one of the
segments present in its neighboring cells based on the growth rate as
a probability. With this methodology, we create 2D and 3D segmenta-
tions. 2D embeddings of 2D segmentations are no meaningful use case.
However, as they allow a simple visual comparison, they provide a good
intuition on how our algorithm works.

The second dataset, D2, is based on a 3D cube divided once in all di-
mensions. Thus, it contains eight equally sized segments. Each segment
has a joint boundary with three other segments and the outer boundary.
Figure 3.2 in the top-left shows this dataset as a volume rendering.

3.6.1 Quality Criteria

For the algorithmic evaluation of the approach, the following set of qual-
ity metrics is used:

• Number of edge crossings: Fewer edge crossings mean less visual
complexity of the visualization. Additionally, edge crossings are a
projection artifact that should be minimized. Therefore, we inves-
tigate the number of edge crossings that are present in the embed-
ding.

• Mean area deviation: The area preservation quality can be deter-
mined by computing the area deviation for each segment. As a
global quality metric, the mean area deviation ¯dA = 1

|S|

∑
s∈S |dA,s|

58 segmentation embedding

is used. The area deviation dA,s is computed by Equation 3.1 and
|S| denotes the number of segments in S.

• Mean boundary length deviation: The mean boundary length devia-
tion allows for assessing how well the boundary length optimiza-
tion works. It is computed as d̄L = 1

|E|

∑
(si,sj)∈E |dL,(si,sj)| where

si and sj are adjacent segments and dL,(si,sj) is the boundary
length deviation defined in Equation 3.2. The number of edges
in the graph is denoted as |E|.

Note that we ensure topology preservation and, thus, we do not in-
troduce a quality criterium to measure the topology preservation. It is
verified that the topology is correctly preserved when executing the al-
gorithm by comparing the graph of the embedding with the graph of
the multi-dimensional segmentation, and we found that our algorithm
works correctly.

3.6.2 Results

In the following, we discuss the evaluation results mainly based on the
synthetic datasets and considering the quality metrics.

3.6.2.1 Visual Comparison

We apply our algorithm to a 2D segmentation of dataset D1 that contains
20 segments to verify our algorithm. Thus, the input data also provides
a ground truth even though the positions and shapes of the embedding
are allowed to vary. The input data and the embedding result are shown
in Figure 3.10. The embedding result was computed using 5, 000 itera-
tions, a scaling factor for the damping of g = 7, and a security factor
threshold of 11. The topological structure of the segmentation is pre-
served. A visual comparison reveals similar segment sizes. The mean
area deviation of ¯dA = 0.017% confirms this observation.

Also, the boundary lengths are perceived as similar, for example, when
looking at the brown segment in the lower left of Figure 3.10b. Most
of its boundary is shared with the green and the lighter blue segment,
while only a short part is shared with the segment in darker blue. These
observations agree well with the boundaries in the original data (see
Figure 3.10a). The similarity in boundary lengths over all segments is
confirmed by the mean boundary length deviation of d̄L = 0.96%. How-
ever, individual segments might deviate. Nevertheless, in general, the
boundary lengths are well preserved. When visually comparing the seg-
mentations, it is obvious that shapes and locations are not preserved.

3.6 algorithmic evaluation 59

(a) Original. (b) Embedding.

Figure 3.10: A 2D segmentation (a) created as part of dataset D1 can be visually
compared to its 2D embedding (b). The topology is preserved, includ-
ing those of the light blue segment (on the right in a), top-left in b))
surrounded by the yellow one. Area sizes and boundary lengths are
also approximately the same, while the shapes and locations of the
segments differ.

However, this is not the goal of this algorithm, as these aspects do not
apply to higher-dimensional inputs, which are the target of our algo-
rithm.

The results for applying our approach to dataset D2, including inter-
mediate steps, are shown in Figure 3.2. The segments appear to have
a similar size confirmed by the mean deviation of ¯dA = 0.089% and a
mean boundary length deviation of d̄L = 5.52%. The dimensionality re-

(a) Original. (b) Embedded.

Figure 3.11: A 2D segmentation (a) with four equally sized segments cannot be
embedded (b) by our algorithm without introducing separators be-
cause the diagonal neighborhood in the center is not represented by
the graph.

60 segmentation embedding

Table 3.1: Quality criteria for different real-world datasets with dimension n and
number of segments |S|. Crossings denote the number of edge cross-
ings after finishing the algorithm, and resolution provides the image
resolution after finishing the cellular automaton.

Dataset n |S| Crossings Resolution ¯dA (%) d̄L (%)

D1 2 20 0 116× 134 0.017 0.963

D2 3 8 4 46× 28 0.089 5.517

Ablation 3 59 14 374× 448 0.547 1.708

Nucleon 3 42 17 208× 270 3.138 1.766

Synthetic 4 4 0 18× 18 1.299 8.264

Blood flow 5 4 0 18× 18 0.170 0.495

Semiconductor 4 13 13 114× 128 1.576 4.045

duction can explain the significantly higher deviations compared to the
previous case. Additionally, the graph of the chosen dataset is nonplanar,
resulting in crossings in the segmentation embedding. This results in
four edge crossings. Additionally, some separators are located between
segments without a joint boundary. They are also unavoidable, which
can be easily seen by our neighborhood definition. In the 3D dataset D2,
the different segments all come together on the diagonal in the center of
the domain. However, as we do not include diagonal neighborhoods in
our algorithm, this behavior cannot be covered accurately. This can also
be shown in a 2D example as presented in Figure 3.11. Even in this 2D
case, a dense visualization without separators is not possible if only the
von Neumann neighborhood is considered for creating the graph. This
is caused by the topology preservation of the cellular automaton which
prevents diagonal neighbors.

In 2D, this leads to a relatively small loss of neighborhood informa-
tion. However, for higher-dimensional data, the neighborhood structure
of von Neumann neighbors is very sparse as, by definition, only the
neighbors along a single dimension are considered [394]. For the appli-
cations presented in this work, this does not impose problems since the
dimensionality of none of the presented examples is very high. Addi-
tionally, the neighborhood criterium for creating the graph can be easily
exchanged if another one is more suitable for the application scenario.

3.6 algorithmic evaluation 61

3.6.2.2 Performance for Different Datasets

Table 3.1 shows the numerical evaluation for different datasets. In this
section, we provide an overview of the applicability of our algorithm to
different datasets, while the influence of the different factors is provided
in the following sections. The timings for these datasets are discussed
in more detail in Section 3.6.2.6. All results were created with a scaling
factor for the damping of 7 and a security factor threshold of 11. If not
stated otherwise, 5, 000 iterations were used for the cellular automaton.

The datasets abbreviated as D1, and D2 in Table 3.1 refer to the
datasets discussed in Section 3.6.2.1. The datasets Ablation and Nucleon
are 3D segmentations that we will discuss in more detail in Section 3.7.
The datasets called Synthetic, Blood flow, and Semiconductor refer to the
parameter spaces of the simulation ensembles investigated in Chapter 4.
We do not discuss the datasets in more detail here, as in this point, only
the accuracy based on the characteristics, such as the number of seg-
ments, is investigated.

In general, the accuracy strongly depends on the dataset. The blood
flow dataset converged after 1134 iterations. The relatively large devia-
tions, for example, when compared to the dataset D1, can be explained
by the small resolution of the output image, which does not permit a
higher accuracy. The synthetic parameter-space partitioning shows very
high deviations in the size of the segments and the boundaries. When
investigating the result in more detail, one can identify that one of the
segments has a very high boundary deviation. Due to the small number
of segments, it strongly influences the accuracy of the result.

3.6.2.3 Influence of Parameters

Different parameters drive the algorithm presented in this chapter. Two
key parameters are the choice of the scaling factor for the damping g

and the threshold of the security factor. To understand their influence,
we use dataset D1 with 5, 10, and 15 segments covering 2D and 3D
domains. We study scaling factors for the damping between 1 and 9

and security factors between 9 and 12 where 12 is the value initially
proposed by Dorling [84]. As the resolution of the cellular automaton
scales with the complexity of the segmentation, the number of iterations
of the cellular automaton is heuristically set to the number of cells.

The results for the area and boundary length deviation in dependency
on the input parameters are shown in Figure 3.12. The accuracy slightly
increases for g > 3. This is expected as strong damping, corresponding
to small values of g, could cause the algorithm to terminate early before

62 segmentation embedding

Figure 3.12: Mean area deviation and mean boundary length deviation are com-
puted based on the scaling factor for the damping g and the security
factor to understand the influence of the parameters.

a minimum in the optimization can be reached. For larger scaling factors
for the damping, no significant variation is visible.

For the security factor, we observe the best results for thresholds of 10
and 11, especially with respect to the mean area deviation. When observ-
ing the mean boundary length deviation, a security factor of 12 seems
to produce the best results at the cost of a larger area deviation. This ob-
servation can be explained by the larger variability in boundary shape
allowed for higher security factor thresholds. This also becomes evident
when visualizing the results for different security factors, as shown in
Figure 3.13. Observing the four different results for the different security
factors reveals negligible differences between security factor thresholds
from 9 to 11. A security factor threshold of 12, however, leads to more
granular boundaries between the segments. Even though it slightly in-
creases the mean boundary length deviation, it adds significantly more
complexity and decreases the mean area deviation. Therefore, we recom-
mend choosing a smaller security factor threshold.

3.6 algorithmic evaluation 63

(a) Security factor 9. (b) Security factor 10.

(c) Security factor 11. (d) Security factor 12.

Figure 3.13: The embeddings with a security factor of 9 to 11 differ slightly, while
the embedding for a security factor of 12 shows more complex bound-
aries between the segments. All embeddings were created using the
same initial configuration.

Based on the numerical results, when considering both optimization
criteria and the visual investigation, we recommend a security factor of
10 or 11. We opt for 11 in the remainder of this chapter.

3.6.2.4 Influence of Graph Embedding

As the graph embedding is the basis for all other steps of our algorithm,
it strongly influences the final visualization. Note that the chosen graph
algorithm can be easily exchanged. As graph drawing is a very complex
topic, going into detail is beyond the scope of this work. However, to
evaluate the influence, we want to evaluate the number of edge cross-
ings based on the computation of the maximum planar subgraph. Ad-
ditionally, we capture the variation over the choice of the external face.
We choose dataset D1 with 5 to 55 segments in steps of 5. We consider
both 2D and 3D input data. We compute all the graph drawings for all
possible external faces to consider the variation over the choice of draw-
ings. For the final evaluation, we only consider successful drawings. Re-
garding the choice of the planar subgraph computation, we use the PQ
tree-based algorithm and the triangle-based algorithm as introduced in
Section 3.2.1.1.

64 segmentation embedding

C
ro

ss
in

g
s

0

50

100

150

200

250

Number of Segments
5 10 15 20 25 30 35 40 45 50 55

Algorithm PQ tree Triangle

(a) 2D.

C
ro

ss
in

g
s

0

500

1000

1500

2000

2500

Number of Segments
5 10 15 20 25 30 35 40 45 50 55

Algorithm PQ tree Triangle

(b) 3D.

Figure 3.14: The number of edge crossings varies depending on the choice of the
subgraph algorithm and the choice of the external face. For 2D input
data (a), that results in planar graphs, only the PQ tree-based sub-
graph algorithm finds at least one embedding without edge crossings.
For 3D segmentations, none of the two tested algorithms is clearly
preferable. However, in all cases, the choice of the embedding with
the smallest number of edge crossings significantly improves the re-
sult.

The results for 2D inputs are shown in Figure 3.14a. For 2D segmenta-
tion data, the representing graph must be planar by definition. However,
while the PQ tree-based algorithm always finds at least one planar em-
bedding, this does not apply to the triangle-based algorithm. The wide
range of edge crossings that might be present in the graph drawing
shows that computing different graph embeddings and choosing the
best one with respect to edge crossings significantly improves the result.

The evaluation for 3D data is presented in Figure 3.14b. We observe
better results for the triangle-based algorithm in some cases, for example,
for 45 or 55 segments, while in other cases, like for 50 segments, the PQ

3.6 algorithmic evaluation 65

M
e
a
n
 a

re
a
 d

e
v
ia

ti
o
n

M
e
a
n
 b

o
u
n
d

a
ry

 d
e
v
ia

ti
o
n

Ti
m

e
 [

s]

Figure 3.15: Comparing only area optimization to area and boundary optimiza-
tion shows the tradeoffs between both criteria. While optimizing for
both increases the area deviation and, even more significantly, the
computation time, the boundary length deviation decreases.

tree-based algorithm is better. However, the number of edge crossings is
generally in the same order of magnitude, so we cannot recommend one
algorithm over the other. In the examples presented in this chapter, we
used the PQ tree-based algorithm because it performed better for planar
graphs, which could also occur for higher-dimensional inputs. Neverthe-
less, if prior knowledge about the graph representing the segmentation
is available, the algorithm can be easily exchanged.

In some of the investigated cases, a more sophisticated edge routing
algorithm for the edges connecting the vertices representing segments
to the boundary would further decrease the number of edge crossings.
However, choosing the best graph drawing among different ones yields
sufficiently good results. Additional postprocessing to remove unneces-
sary edge crossings in later steps could also remove some of the edge
crossings introduced by the simple edge rerouting.

3.6.2.5 Optimization Criteria

The influence of the different optimization criteria, namely area and
boundary length preservation, should also be evaluated. As the bound-
ary length optimization does not lead to spreading the segments and,
thus, to reducing background voxels, we do not consider only optimiz-
ing for boundary length. Instead, we compare using only the area opti-
mization to a mutual optimization of area and boundary length. For this
evaluation, we use dataset D1 with 3D segmentation of 5 to 15 segments
in steps of 1. As the area deviations are usually smaller than the bound-
ary length deviations, considering only area deviations with a scaling
factor for the damping of 7 could lead to early stopping. Therefore, we in-
crease it to 100 when excluding the optimization of the boundary length.

66 segmentation embedding

The results for the different optimization criteria and computation
times are shown in Figure 3.15. Adding the boundary optimization leads
to a larger area deviation and a smaller boundary length deviation. This
meets our expectations as we obtain a trade-off for both optimization cri-
teria. However, it is notable that the difference, especially in the bound-
ary length deviation, is relatively small. When considering the compu-
tation times, the difference is larger, as optimizing only for area preser-
vation is significantly faster. Thus, we recommend choosing only the
area preservation if faster computation times are more important than
boundary length preservation. For example, this might occur for seg-
mentations represented by large and complex graphs. If area preserva-
tion is mainly of interest, one might also consider excluding the bound-
ary length preservation to obtain better results. We consider both for
the remainder of the chapter, as we want to include both aspects in the
analysis.

3.6.2.6 Scalability

For the last algorithmic analysis, we want to consider the scalability of
our approach, which depends on different factors based on the different
steps. The algorithm starts with the graph computation. The vertices
and their weights can be computed in O(N) for N grid cells in the multi-
dimensional input domain. For n-dimensional input data, the shared
boundaries can be determined in O(Nn) because both neighbors in each
dimension must be checked for each grid cell. However, the number of
grid cells usually grows with an increasing dimension. When assuming
the same sampling, the number of grid cells grows exponentially.

All the following steps only depend on the weighted graph and are,
thus, independent of the number of samples and the dimensionality. In-
stead, the computational complexity depends on the internal complexity
of the segmentation that should be visualized. The number of vertices
and edges can characterize the complexity of the graph. With the increas-
ing complexity of the graph, not only do the computational costs for the
graph drawing increase but also the number of cells in the cellular au-
tomaton that are required to draw the graph. This leads to increased
computation times for the iterative computation to optimize areas and
boundary length. Edge crossings further increase computation times as
additional steps for their movement and potential removal need to be
executed.

The mean area and mean boundary length deviation in dependence
on the number of segments are shown in Figure 3.16a. In general, we
observe a decrease in the deviations. However, this is also caused by an

3.6 algorithmic evaluation 67

6 8 10 12 14
Number of Segments

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
e
a
n
 D

e
v
ia

ti
o
n

Area

Boundary

(a) Mean Deviation.

6 8 10 12 14
Number of Segments

0

1000

2000

3000

Ti
m

e
 [

s]

(b) Time.

Figure 3.16: The mean deviations decrease for both area and boundary size, with
an increase in the number of segments (a). At the same time, the
increased graph complexity leads to an increase in the computation
times (b).

Table 3.2: Timings for the individual steps of different datasets with N input vox-
els and M pixels in the output.

Dataset N M Graph (s) Embedding (s) Automaton (s)

D1 2,500 15,544 0.006 0.576 244.122

D2 8,000 1,568 0.037 0.353 45.706

Ablation 778,688 166,656 2.851 129.784 4809.0

Nucleon 68,921 56,160 0.245 1.669 1112.2

Synthetic 10,000 324 0.086 0.008 14.086

Blood flow 3,200,000 324 26.446 0.009 3.294

Semiconductor 10,000 14,592 0.090 5.562 257.648

increasing number of cells available for the cellular automaton. Thus, if
the deviations are too high using our standard algorithm, one option to
improve the values might be increasing the available cells. This can be
achieved by removing the simplification step where duplicate rows and
columns are removed. If the number of cells should be further increased,
the multiplication factor f for the resolution could be increased manu-
ally. However, increasing the resolution comes at the cost of significantly
larger computation times.

Figure 3.16b shows the timings for dataset D1 with 5 to 15 segments
for 3D data. All timings were obtained on a laptop with a 1.7GHz AMD
Ryzen Pro 7 processor. The computation times increase significantly with
the number of segments, which can be explained by the more complex
graph needing more grid cells and more edge crossings.

The computation times of the different steps vary strongly among the
different datasets. Therefore, we provide an overview of the computa-

68 segmentation embedding

tion times of each dataset where we use the datasets discussed in Sec-
tion 3.6.2.2. The results are presented in Table 3.2.

The most time-consuming step depends on the dataset. In general,
the number of voxels in the input space determines the computation
time for the graph, which confirms our theoretical considerations. The
time for the embedding depends on the complexity of the graph for
which the number of segments and the number of edge crossings (see
Table 3.1) provide an indicator. Finally, the computational cost for the
automaton is mainly dominated by the number of automaton cells which
equals the number of pixels in the output. The computation times for
the cellular automaton for the blood flow dataset are significantly lower
than those of the parameter-space partitioning of the synthetic dataset.
This is caused by the early termination of the optimization for the blood
flow dataset. The longest computation times for applying the cellular
automaton are found for the ablation and nucleon datasets. However,
these two datasets also need a significantly higher resolution for the
cellular automaton.

3.7 embedding of 3d segmentations

To demonstrate the applicability of the approach, we apply it to 3D
image segmentations. The application to multi-dimensional parameter-
space partitionings is discussed in Chapter 4. Another application sce-
nario for 3D segmentations of ensemble data is presented in Chapter 8.

As a first application, we study the 3D volume segmentation used to
create the radiofrequency ablation simulation that will be analyzed in
more detail in Chapter 7. The segmentation contains 11 labels that indi-
cate different organ tags and tags for the tumor and the needle. Just as
the simulation output, the segmentation has a resolution of 92× 92× 92.
However, the regions with unique organ tags are not connected. There-
fore, we set a unique ID for each connected component resulting in 59

segments.
Figure 3.17 shows the result when applying our algorithm. For the

color coding, we apply a color map on the original organ tags such
that different segments with the same tag are shown in the same color.
When observing the embedding, it becomes directly evident that the two
largest segments are the liver and a region without organ tags available.
Those two segments cover the majority of the 3D domain.

In the center of the embedding, a group of segments with common
boundaries represents the vessels. One can observe that the portal vein
(PV) and the hepatic artery (HA) share a boundary with the unlabeled
tissue, while the hepatic vein (HV) is not connected to the correspond-

3.7 embedding of 3d segmentations 69

No organ tags

Liver

Tumor

Needle

HV

PV HA

Cartilage

Bones

Lung

Figure 3.17: The embedding of the 3D image segmentation used for the ablation
dataset is color-coded according to the organ tags. The visualization
reveals information about the sizes of the different regions as well as
about the topological structure of the segmentation.

ing segments. We can spot tiny segments belonging to the hepatic artery
inside the large segment representing tissue without organ tags. These
segments are completely enclosed by the other segment. However, artery
parts disconnected from the boundary and other veins are not plausible.
Therefore, these segments indicate either mistakes in the segmentation
or undersampling artifacts. When investigating the embedding in more
detail, we can identify that the needle used for the ablation is only con-
nected to liver tissue, the tumor, and unlabeled tissue. Based on this
observation, one can state that the needle placement does not cause dam-
age in other tissue types.

As a second application example, we use the nucleon dataset with
a resolution of 41× 41× 41. We partition the dataset based on the his-
togram as shown in Figure 3.18a and then identify connected compo-
nents. This leads to 42 segments. Three selected groups based on the
histogram are shown in Figure 3.18b. For computing the embedding, we

70 segmentation embedding

50 100 150 200 250
Value

101

102

103

104

C
o
u
n
t

Group 1 32 4 5 6 7

(a) Histogram. (b) Volume visualization.

Figure 3.18: The nucleon dataset can be partitioned based on its histogram (a). We
can only show a subset of the regions in volume visualization (b).

Group 1 32 4 5 6 7

Figure 3.19: The 2D embedding of the partitioned nucleon is color-coded accord-
ing to the segments defined in Figure 3.18a.

3.8 discussion 71

used 2, 000 iterations. The resulting embedding is shown in Figure 3.19,
where we used the group IDs as shown in the histogram in Figure 3.18a
for the color coding. The embedding allows for investigating the struc-
ture of the segmentation. It can be observed that the violet region (label
1) not only appears as surrounding the nucleon and is the only segment
connected to the boundary, but it also appears in a separate segment
inside. The yellow (label 7) and light green (label 6) regions are sur-
rounded by the region labeled with 5. However, both regions connect to
those labeled as 4. Additionally, regions corresponding to labels 3 and
5 are split into several segments. Here, one can deduce that we again
observe artifacts caused by a relatively coarse sampling.

3.8 discussion

In this chapter, we presented an algorithm to compute 2D embeddings of
multi-dimensional partitionings or segmentations. In the embedding, we
preserve the topology while optimizing the area and boundary sizes ac-
cording to the original areas and boundary sizes in the multi-dimensional
space. To create the embedding, a graph is derived from the multi-
dimensional segmentation. A drawing of the graph provides the ini-
tial configuration for a cellular automaton that optimizes the areas and
boundary sizes. Finally, we apply shading to visualize the segments
while allowing for various color codings.

Besides fulfilling the optimization criteria, our approach allows for
identifying structures like segments enclosed by other segments or con-
nections to the boundary. The algorithmic properties were evaluated
based on synthetic datasets. At the same time, the application to 3D
data provided an overview of the segmentation that cannot be obtained
in other visualization approaches like volume renderings without a large
amount of interaction and colormap optimizations. The embedding be-
comes even more helpful for higher-dimensional spaces, as shown in the
following chapter.

An alternative visualization of the multi-dimensional segmentation
can be obtained by interpreting the grid points as samples and project-
ing the samples using common dimensionality reduction techniques like
MDS or UMAP. However, these techniques do not preserve the topology
and cause many overlaps between the different segments. While over-
laps might be solved using a variant of approaches for decluttering scat-
terplots [72], the topology preservation is not ensured. Another option to
reduce the dimensionality might be using space-filling curves to obtain
space-filling visualizations [399]. However, also in this case, the topol-
ogy is not preserved. Therefore, these visualizations also cannot be eval-

72 segmentation embedding

uated with respect to the segment and boundary size preservation. For
a direct comparison of our segmentation embedding to dimensionality
reduction, see Chapter 4. We show embeddings of the parameter-space
samples together with the respective segmentation embedding and dis-
cuss the advantages and disadvantages in more detail.

The node-link diagram that we use as a starting point for the algo-
rithm already contains the full topological information. There are also
alternative approaches to incorporating the segment and boundary sizes
in the node-link diagram, for example, using node sizes and edge widths.
While our approach uses the space efficiently, node-link diagrams are a
familiar representation to many users. Therefore, in the future, we plan
to conduct a user study to better understand the tasks for which our
visualization is preferable over a node-link diagram and vice versa.

While the embedding provides an overview of the segmentation, it
does not encode the positions and shapes of the segments. For this pur-
pose, the 2D embedding could be linked to other coordinated views,
such as volume or surface renderings in the case of 3D segmentations.
In these visualizations, selected segments can be shown in their original
domain. Thus, we do not consider our visualization a replacement for
standard visualization techniques, as they are, for example, common in
the medical domain. Instead, our overview embedding focuses on inves-
tigating the structure of the segmentation and aims at analysis settings
where detailed information on all segments is required.

In its current implementation, the algorithm is computationally rela-
tively expensive. This remains feasible as the computation of the 2D em-
bedding could be performed as a preprocessing step in any interactive
setting. However, optimizing and parallelizing the algorithm can signif-
icantly improve computation times. In the algorithmic evaluation per-
formed in this chapter, we found that preserving the boundary length
was more difficult than preserving the area. Therefore, we plan to im-
prove boundary length preservation in future research. Additionally,
in some cases, the segments are connected by rather thin connections
which is partially caused by the global optimization of the algorithm
and makes the interpretation more difficult. This shortcoming can be
improved by including additional optimizations to the cellular automa-
ton, whose performance already significantly improved by allowing the
edge crossings to move.

4
A N A LY S I S O F PA RT I T I O N I N G S

One key goal in the analysis of simulation ensembles is analyzing the
parameter space and its effect on to the simulation outcome. Each input
parameter can be seen as one dimension forming the multi-dimensional
parameter space. Every simulation run is driven by a parameter setting
which can be interpreted as multi-dimensional point in the parameter
space. However, multi-dimensional parameter spaces, especially with di-
mensionalities larger than three, are challenging to analyze.

To understand how the parameters influence the simulation outcome,
it is often desired to segment or partition the parameters space such that
each segment represents parameter settings leading to similar simula-
tion outcomes. In the field of flow simulations, for example, one com-
monly differentiates between laminar and turbulent flows, which would
also partition the parameter space into two distinct regions. Then, one
wants to analyze which parameter values lead to which kind of behavior
and where the boundaries between both parameter-space segments are
located. This corresponds to studying the extent of the segments and the
locations of the segment boundaries. While the embedding presented in
Chapter 3 allows for showing the topological structure of the partition-
ing and provides an overview, it does not allow for investigating the
extent and locations of the different partitions.

This chapter presents an interactive visual analysis approach that tar-
gets the definition and analysis of parameter-space partitions. We start
by defining the problem (see Section 4.2) followed by an overview of our
approach (see Section 4.3). In the first step of the analysis, a partitioning
is created in the similarity space based on the simulation outcome de-
scribed in Section 4.4. When using the term similarity space, we refer to
the space formed by pairwise similarities between the simulation output
of the different runs. Second, the similarity space partitioning induces
a partitioning on the parameter space. For the analysis of the parame-
ter space, it should be possible to see the shapes of the segments and
see the parameter values directly as discussed in Section 4.5. For this

73

74 analysis of partitionings

purpose, we introduce the hyper-slicer for distortion-free visualization
of parameter-space segmentations. Finally, the partitioning should be
modified based on the previously obtained insights leading to an inter-
active visual analysis workflow as presented in Section 4.7. We compare
the extended hyper-slicer that is the core of our analysis approach to
other distortion-free multi-dimensional data visualization techniques in
Section 4.6. Finally, we evaluate our approach by applying it to three
real-world simulation ensembles (see Section 4.8).

The results presented in this chapter are mainly based on the follow-
ing publication:

M. Evers and L. Linsen, Multi-dimensional Parameter-space
Partitioning of Spatio-temporal Simulation Ensembles, Com-
puters & Graphics 104: 140-151 (2022)

Both authors contributed to discussing ideas, writing, and editing the
manuscript. I implemented the approach and created the results.

4.1 related work

For a general overview of related work in parameter-space analysis, we
refer to Section 2.2.1. However, none of the presented approaches allow
for a global, distortion-free overview of the parameter space. Besides
these visualizations, methods for navigating through multi-dimensional
spaces have been proposed [18, 95]. ManyLands [12] analyzes 4D trajec-
tories based on subspaces in different dimensions, but these approaches
are not directly applicable to our analysis tasks.

In this work, we extend the concept of hyper-slices [353], which shows
a slice around a focus point for each individual dimension. Thus, hyper-
slices can be seen as a variant of scatterplot matrices for continuous
data. Hypersliceplorer [342] extends this concept to show multiple slices
simultaneously, quickly leading to cluttered visualizations. Therefore, it
is not well suited for our purpose of visualizing several segments and
their boundaries. HyperMoVal [266] aims at validating regression mod-
els and uses hyperslices to visualize the model space. In contrast to the
work presented in this chapter, they do not analyze parameter-space
partitionings and their properties. Collaris et al. [66] investigate expla-
nations in machine learning models and use hyper-slices to visualize
local context in multi-dimensional spaces but do not target simulation
ensembles.

https://dx.doi.org/10.1016/j.cag.2022.04.005
https://dx.doi.org/10.1016/j.cag.2022.04.005

4.2 task definition 75

T1 T2 T3 T4

Berger et al. [33] ✗

Fofonov et al. [111] ✗

Luboschik et al. [221] ✗

Matkovic et al. [224] ✗

Piringer et al. [266] ✗

Splechtna et al. [321] ✗

Torsney-Weir et al. [343] ✗

Unger et al. [346] ✗

Obermaier et al. [247] ✗ ✗ ✗

Wang et al. [361] ✗ ✗ ✗

Bergner et al. [34] (✗) ✗ ✗ ✗

Our approach ✗ ✗ ✗ ✗

Table 4.1: Overview of tasks supported by different parameter-space analysis ap-
proaches. Bergner et al. [34] only allow for manual partitioning in two
groups and, thus, support (T1) partially.

4.2 task definition

In the context of this chapter, we consider spatio-temporal simulation
ensembles as introduced in Section 1.1 but only consider single-field
simulations. Additionally, we focus on the analysis of input parameters.
While initial conditions might be varied over the ensemble, we do not
analyze their influence, which might complicate the analysis using the
approach presented in this chapter. Additionally, we require a unique
set of input parameters for each simulation run to define the parameter
space partitionings. For parameter spaces of dimensionality less or equal
to three, direct visualizations using heatmaps for 2D data (see Chapter 5)
or volume renderings are applicable. Here, we focus on visualizing pa-
rameter spaces with a dimensionality larger than three. However, we
assume that the dimensionality does not become too large because, for
high-dimensional parameter spaces, dense sampling for spatio-temporal
simulation data is computationally infeasible. Thus, the analysis tasks
for sparsely sampled, high-dimensional parameter spaces are very dif-
ferent and require further research.

The visual analysis should address the following tasks:

76 analysis of partitionings

T4.1 Partitioning the parameter space. Clusters in similarity space con-
tain a set of simulation runs with similar behavior and induce a
partitioning in parameter space. The users should be able to cre-
ate the parameter-space partitioning by defining the clusters in the
similarity space.

T4.2 Creating a parameter-space overview. The users should be able to
obtain an overview of the parameter-space partitioning such that
all partitions can be seen at once. This supports the user in un-
derstanding the structure of the parameter-space partitioning and
allows for easier navigation in more detailed views.

T4.3 Analyzing uncertainty and extent of the partitions. It should be pos-
sible to analyze the positions, sizes, distances, and shapes of the
parameter-space partitions while conveying the partitions’ uncer-
tainties to avoid misinterpretations.

T4.4 Exploring the simulation outcome. Users should be able to explore
the simulation outcome on different levels of detail to obtain a com-
prehensive understanding of the simulation ensemble. Thus, spa-
tial and temporal visualizations need to be included in the analysis
approach.

It is still common in practice to address these tasks by a manual ap-
proach where the ensemble members are analyzed and compared in-
dividually. As this process is tedious and time-consuming, we propose
an interactive approach realized as an integrated tool that facilitates the
entire workflow. Therefore, we incorporate (semi-)automatic algorithms
for computing the parameter-space partitioning while allowing users
to use their domain knowledge to influence the outcome. While differ-
ent other approaches in visualization research address a subset of these
tasks, none of them provides a comprehensive solution, as shown in Ta-
ble 4.1. It becomes clear that our approach is the only one that fully
supports all identified tasks.

4.3 overview

We propose to use multiple coordinated linked views to address the
tasks above and investigate the many different facets of the data. Each
view addresses a subset of the tasks and facets, but the close integration
allows for a comprehensive analysis. The analytical workflow follows the
principle “Overview first, zoom and filter, then details on demand” [313]
and includes different facets of the ensemble data as shown in Figure 4.1.

4.3 overview 77

Similarity space

Similarity embedding

Temporal evolution plot

Clustering dendrogram
Parameter space

Hyper-slicer

Parameter sample
embedding

Volume
visualizations

Volume slicer Direct volume renderer

Figure 4.1: Our visual analysis approach allows for investigating the parameter
space of a simulation ensemble together with its similarity space and
direct volume visualizations.

At first, a clustering of the ensemble members based on their simi-
larity needs to be created. Thus, we obtain a parameter-space partition-
ing (see task T4.1). Clusters can be computed fully automatically, as is
commonly done in pattern recognition. However, any clustering algo-
rithm depends on parameters significantly influencing the result. Com-
pletely manual cluster generation as performed, for example, by Bergner
et al. [34] requires inspection of all individual ensemble members and is
very time-consuming. Therefore, we opt for semi-automatic cluster gen-
eration where a clustering is computed automatically, but the driving
parameter of the algorithm can be adjusted interactively. Hierarchical
clustering approaches only depend on a pruning level determining how
many clusters should be formed. This parameter can be chosen intu-
itively by the user, especially if the clustering hierarchy is visualized us-
ing a dendrogram. Thus, we choose a hierarchical clustering where the
users can select and change the clustering level in a clustering dendrogram
as described in more detail in Section 4.4.2. Alternative methods for find-
ing clusters in the similarity space of the simulation ensemble depend
on less intuitive parameters such as kernel sizes, the (static) number of
expected clusters, or bin sizes.

To judge and, if necessary, modify the clustering outcome, we include
visualizations of the similarity space. We use a 2D embedding of the

78 analysis of partitionings

simulation runs based on their pairwise similarities. Thus, each point in
the embedding represents one simulation run. As we want to investigate
the similarities between the runs, they should be encoded as distances in
the embedding. Therefore, we aim at preserving distances by minimiz-
ing the stress, which is done by multi-dimensional scaling [373]. In the
resulting MDS embedding, which we will refer to as similarity embedding,
the points are color-coded according to the cluster to which the corre-
sponding simulation runs belong. For more details, see Section 4.4.3.

To address task T4.2 and obtain an overview of the entire parame-
ter space and its partitioning, we include a segmentation embedding
as discussed in Chapter 3 where the different segments are color-coded
according to the clusters they belong to. In the context of this chapter,
we refer to the corresponding visualization as parameter-space embedding,
see Section 4.5.2 for details. The embedding of the parameter space pre-
serves joint boundaries and allows for easily assessing if the segments in
parameter space that are induced by the clustering are connected. The
segmentation embedding further contains additional information, like
the sizes of the segments. Besides providing an overview, this embed-
ding also supports navigation. In the paper corresponding to this chap-
ter [100], we proposed to use an MDS embedding of the parameter space
samples. We provide a more detailed discussion of the two approaches
in Section 4.5.2.

The overview visualization of the parameter space is complemented
by a distortion-free visualization to analyze the geometric structure of
single segments (see task T4.3). The embedding neither preserves the
shapes of the segments nor allows for reading of the values in the differ-
ent dimensions. Alternatives would be parallel coordinates or SPLOMs,
but they hinder intuitive understanding by overplotting. A detailed com-
parison is provided in Section 4.6. Instead, we propose an extended ver-
sion of the hyper-slices, which we refer to as hyper-slicer and is presented
in Section 4.5.1. It provides distortion-free visualizations [266, 342] and is
based on viewing slices, which is a standard visual encoding and famil-
iar to many domain experts. To overcome the shortcoming that hyper-
slices only show information around a single focus point, we enrich our
visualization with projections of the boundaries of the parameter-space
partitions and an uncertainty encoding of the partitioning.

Finally, one also wants to investigate the behavior of the ensemble
members (see task T4.4). We use a time-dependent embedding of the
similarity space to encode the evolution over time. Here, we use a 2D
MDS embedding for the same reasons as for the similarity embedding
discussed above. Each ensemble member is shown as a polyline that rep-
resents the temporal evolution. Therefore, we refer to this visualization

4.3 overview 79

(0.75, 0.5, 1, 0)(0, 0.25, 1, 0)

(0, 0, 0, 0.25) (0.75, 0, 0.25, 0)

0.5

1

0

Figure 4.2: The synthetic dataset is created by partitioning the parameter space in
four regions (red, green, blue, and purple) depending on the param-
eters a1, a2, and a3 while the parameter a4 does not influence the
result. The images on the right show examples of the 2D data used as
simulation output where the colored frames indicate to which cluster
the ensemble members belong, and the exact parameter settings are
given below the images.

as a temporal evolution plot, see Section 4.4.4 for more details. Single time
steps of a single ensemble member can be shown by direct volume ren-
dering or, in case of occlusion or for 2D data, using a slice viewer. For
complex 3D data, it is also possible to combine those two visualizations.

To visually link the different views, we choose consistent color coding,
because color is most intuitive for this purpose. For more details on
linking the coordinated view, see Section 4.7. For the implementation of
our approach, we use the Voreen framework [231, 85], which provides
a modular structure. Thus, the different components can be reused for
other applications, and the workflow is easily adaptable, for example, if
it should be extended to vector field data.

4.3.1 Synthetic Dataset

To explain our visual encoding in the following parts and validate our
approach, we use a synthetic dataset with a four-dimensional parame-
ter space defined over [0, 1]4. The four parameters are called a1, a2, a3,
and a4, where only the first three influence the output. The simulation
outcome is defined over a 2D domain of a resolution of 64× 64 and is
characterized by a varying number of Gaussian kernels that also differ
in position and size. Here, we model four different behaviors as repre-

80 analysis of partitionings

sented in Figure 4.2. The four different regions in parameter space are
defined as follows:

1. Only one Gaussian in the center (blue)

2. One Gaussian in the center and one in the lower left (purple)

3. One Gaussian in the center and one in the top right (red)

4. One Gaussian in the center, one in the lower left, and one in the
top right (green)

The 4D parameter space is sampled equidistantly with 5 samples in
each direction leading to 625 ensemble members in total. The detailed
equations for creating this dataset are presented in Appendix B.1.

4.4 similarity space analysis

The analysis of the similarity space allows for a comprehensive analysis
of the whole ensemble and a semi-automatic clustering of the ensemble
members. The clustering is then used to induce a partitioning in the pa-
rameter space. Therefore, we will start by explaining our approaches for
similarity space analysis before presenting the parameter-space visual-
izations that are the main contribution of this chapter.

4.4.1 Clustering

One main goal of the similarity space analysis is defining a cluster-
ing that induces a parameter-space partitioning in different regions that
show similar behavior in the simulation outcome. Therefore, we will first
present our choice for a similarity measure (see Section 4.4.1.1) before
discussing the choice of the clustering algorithm (see Section 4.4.1.2).

4.4.1.1 Similarity Measure

The first part of the analysis is based on the similarity space. To define
the similarity space, one needs to define a pairwise similarity measure
between ensemble members. The field similarity measure proposed by
Fofonov and Linsen [111] defines the similarity between two scalar fields
and can be seen as a generalization of an isosurface similarity measure
to include all possible isosurfaces. They discuss that their similarity mea-
sure is preferable for ensemble data as it preserves characteristics of ob-
served phenomena. We refer to their paper for a detailed comparison to
other similarity measures.

4.4 similarity space analysis 81

Figure 4.3: The illustration shows how the similarity between two ensemble mem-
bers ri and rj can be computed over time. Only the distances in the
joint time interval are considered.

In the first step of computing the similarity between two timesteps
tm and tn of runs ri and rj, they create a vector of random sample
points using a Monte Carlo approach. The Monte Carlo sampling sig-
nificantly reduces the computation times compared to using all sample
points in the original data. From these sample points that are equal for
all considered fields, a vector v(ri, tm) that represents the scalar field
of run ri and timestep tm can be created (see also Section 2.3.2). Now,
the distance d(v(ri, tm), v(rj, tn)) between the two vectors v(ri, tm) and
v(rj, tn) can be computed as

d(v(ri, tm), v(rj, tn)) = 1−

∑
k(1− max(vk(ri, tm), vk(rj, tn)))∑
k(1− min(vk(ri, tm), vk(rj, tn)))

, (4.1)

and corresponds to the distance between the scalar field of run ri at
timestep tm and run rj at timestep tn.

For clustering simulation runs, we need to generalize this similarity
measure to cover temporal data. For fast computation, we use the dis-
tances created between the different time steps following Equation 4.1.
Therefore, we consider the average distance over time as shown in Fig-
ure 4.3. We need to consider that different simulation runs might cover
different time intervals and use different step lengths. Therefore, we only
consider the overlapping time interval [tmin, tmax]. As we consider simu-
lation ensembles here, we can assume that the overlapping time interval
is sufficiently large. Additionally, pairwise comparisons between ensem-
ble members allow for always choosing each pair’s largest joint time in-
terval. Next, the joint time interval is equidistantly resampled. The num-
ber of sample points N is chosen as the maximum number of timesteps
of the two runs that should be compared. It is used to determine the
step length

∆t = (tmax − tmin)/(N− 1) .

82 analysis of partitionings

Thus, we can compute the distance between runs ri and rj as

d(ri, rj) =
1

N

N−1∑
n=0

d(v(ri, tn), v(rj, tn)) , (4.2)

where tn = tmin + n∆t. Computing the distance based on the pairwise
distance between the individual timesteps allows for effective computa-
tions if the distances between all time samples are precomputed. There-
fore, we can also support selections of temporal intervals of interest for
which the pairwise similarities over time can be recomputed at interac-
tive rates.

However, simulation runs are not always temporally aligned. There-
fore, depending on the application scenario, it should be possible to con-
sider a time lag between the ensemble members to find the best match.
That is why we allow a time shift to a user-defined upper threshold τmax.
If the time shift should be included, the distance between the runs ri and
rj is computed as

d(ri, rj) =
1

N
min
τ

(
N∑

n=0

d(V(ri, tn),V(rj, tn + τ))

)
, (4.3)

instead of using Equation 4.2. Here, τ is varied in discrete steps in the
interval [−τmax, τmax]. The choice of using either Equation 4.2 or Equa-
tion 4.3 is left to the domain expert as it is usually clear from the appli-
cation scenario.

Based on the pairwise distances computations, one can form a dis-
tance matrix DR, which stores the distances among all runs and forms
the similarity space.

4.4.1.2 Hierarchical Clustering

To find clusters of similar ensemble members (see task T4.1), we use
the distance matrix DR as an input for clustering. Here, we propose
to use hierarchical clustering because the number of clusters is usually
initially unknown. Hierarchical clusterings generate hierarchies for dif-
ferent numbers of clusters that could then be changed interactively. For
this purpose, clusters are iteratively merged following a bottom-up ap-
proach until one obtains a single cluster containing all data points.

The structure of the hierarchical clustering can be represented as a
tree data structure where each node is formed by a cluster created by
merging the clusters represented as its children. Thus, the single cluster
containing all sample points forms the root of the tree, while the leaves

4.4 similarity space analysis 83

are formed by clusters that contain only single simulation runs. By se-
lecting a pruning level corresponding to a certain height of the tree, the
number of clusters can be selected after computing the complete hierar-
chical clustering.

The clusters that should merge when creating the hierarchical clus-
tering are determined by the linkage algorithm. However, the choice of
the best linkage algorithm depends on the data. Thus, we included a
set of common linkage algorithms and left the choice to the user. It also
allows for interactively experimenting with different algorithms. In our
approach, we include the following algorithms:

• Ward’s minimum variance method (ward.D2) minimizing the in-
crease in variance when merging two clusters

• An adapted version of Ward’s minimum variance method (ward.D)
where the distances are not squared

• Single linkage, which uses the minimum distance

• Complete linkage, which minimizes the maximum distance be-
tween points

• Average linkage with the unweighted pair-group method for arith-
metic averages (UPGMA) minimizing the average distance between
pairs of elements when considering the union of the clusters

• Average linkage with the weighted pair-group method for arith-
metic averages (WPGMA) based on the average distance between
pairs of points from both clusters

We used R to compute the linkage algorithm, where we used RInside [88]
to access it from our C++ implementation.

4.4.2 Cluster Analysis

The result of the hierarchical clustering is not a unique clustering but
instead a tree, as described in the previous section. A concrete clustering
can then be obtained by defining a height in the tree and using it as
a pruning level. We follow the standard procedure of visualizing the
clustering result as a dendrogram to find a suitable pruning level and
obtain an overview of the hierarchical clustering. An example can be
seen in Figure 4.4a. The dendrogram directly shows the tree structure
and, thus, visualizes the order in which the clusters merge. Additionally,
the height in the tree encodes the dissimilarities between the merging
clusters based on the linkage algorithm. When selecting a pruning level,

84 analysis of partitionings

Pruning level

(a) Full dendrogram.

Selected cluster

(b) Cluster selection.

Figure 4.4: The pruning level in the clustering dendrogram can be used to define
the number of clusters and change it interactively (a). Selecting single
clusters in the dendrogram, induces a re-coloring of the corresponding
clusters and allows for more detailed investigation (b).

the number of clusters is set based on the number of branches cut at this
height. For the example shown in Figure 4.4a, the chosen pruning level
results in 4 clusters.

When choosing a pruning level, the resulting clustering is computed
and linked to the other visualizations by assigning colors to the clusters.
For defining the colors for each cluster, we define three requirements:

1. The colors should be easily distinguishable.

2. Very high numbers of clusters should be avoided to prevent an
oversegmentation of the ensemble and, later on, the parameter
space. Therefore, we can assume the need for a moderate number
of distinguishable colors.

3. When changing the granularity of the clustering by adapting the
pruning level, the colors should only change as much as necessary.

Following these requirements, we choose a categorical color map. Here,
we decided to use a color map with up to 12 different colors generated
by ColorBrewer [51]. For the results in this chapter, we used the color
map “Set 1” with 8 different colors. Note that the color maps could be
easily adapted or exchanged if a different number of colors is needed or
if, for example, color blindness should be considered.

We traverse the tree following a top-down approach to assign the col-
ors to the clusters. The first color gets assigned to the root node. For each
node, the same color is propagated to the child with the largest subtree

4.4 similarity space analysis 85

Figure 4.5: Each point in the similarity embedding represents one ensemble mem-
ber, and the distance between the points encodes the similarity be-
tween the ensemble members. The color encodes the clusters based
on color assignment in the dendrogram.

such that the cluster with the most samples keeps the color if the prun-
ing level is changed. The other child obtains the next color in the color
map until no more colors are available. In this case, both children obtain
the parent’s color.

This coloring procedure leads to many clusters getting the same color
if small clusters should be investigated. This prevents an oversegmenta-
tion of the parameter space. However, if clusters on a lower level of de-
tail should be investigated, subclusters can be selected. To the resulting
sub-tree, the color is reassigned following the same method, while the
clusters that are not selected are colored in light gray to provide orienta-
tion while not being too prominent. An example of a dendrogram with
this structure is shown in Figure 4.4b where the recoloring compared to
Figure 4.4a is shown.

4.4.3 Similarity Embedding

Besides visualizing the structure of the clustering in the dendrogram, we
also want to visualize the similarity space as given by the distance matrix
DR. It allows for evaluating the clustering quality directly in the space
where the clustering is created. Here, we use an embedding where the
distances in the low-dimensional space should reflect those in the multi-
dimensional space defined by DR. This goal is achieved by minimizing
the stress function, which is the objective function of MDS, which we
apply to the distance matrix DR. Thus, each projected sample point in
the embedding represents one ensemble member.

To visually link the embedding to the other visualizations and show
the clusters, we color-code the sample points according to the assigned

86 analysis of partitionings

Figure 4.6: In the temporal evolution plot, each run is represented as a curve over
time. Distances between points on the curves represent similarities in
the simulation outcome.

cluster colors as shown in Figure 4.5. If the clustering is changed in the
dendrogram, the new clustering is immediately reflected in the embed-
ding by changing the colors. Thus, a suitable clustering can be found by
interacting with the dendrogram and investigating how well the cluster-
ing matches potential clusters in the embedding.

In the synthetic dataset, whose embedding is shown in Figure 4.5, we
observe four groups in the embedding as expected by the definition of
the dataset. Therefore, we also select a pruning level that leads to four
clusters, as shown in Figure 4.4a. When varying the pruning level, one
could also split the green and red clusters into three subgroups that
align with the subgroups visible in the embedding.

4.4.4 Temporal Evolution Plot

The similarity embedding is based on the distance matrix DR, which is
aggregated over time. However, to investigate the runs’ behavior over
time, it is essential to visualize their temporal evolution. For example,
this also allows for finding out whether runs converge or diverge and
observing behavior like periodicities (see task T4.4).

For visualizing the temporal evolution, we use multi-run plots [112]
as described in more detail in Section 2.3.2. For creating the multi-run
plot, we use the distance matrix DT that contains the distances between
the individual timesteps and is used as a starting point to aggregate for
the distance matrix DR.

4.5 parameter-space visualizations 87

P1

P2

P3
Focus point

P3

P2

P1
0.6

0.5

0.7

Figure 4.7: The slices of the hyper-slicer are created around a focus point (red).
The parameter space is formed by parameters P1, P2 and P3 (shown
as gray cube). The slices are then created from the volume formed by
the parameter space. The coordinates of the focus point are shown
together with the parameter names on the diagonal of the matrix.

Similar to the similarity embedding, the different runs in the tempo-
ral evolution plot are color-coded according to the cluster they belong
to. This allows for quickly evaluating how the runs of certain clusters
behave over time, as shown in Figure 4.6, which shows an embedding in
3D. In general, we support embeddings in 1D, 2D or 3D spaces where
the optimal dimensionality depends on the analysis goal as well as on
the intrinsic dimensionality of the data. When creating a 1D embedding,
the embedding can be shown on the vertical axis while time is used as
the horizontal axis. Thus, the evolution over time can be intuitively an-
alyzed. Explicitly encoding the time as an axis also allows for selecting
time intervals for further analysis. This is especially helpful if, for exam-
ple, initial transition phases should be excluded. In 2D and 3D embed-
dings, the time component can be included by varying the saturation of
the color. Alternatively, it is possible to encode time intervals that were
selected in 1D by rendering the timesteps inside of the interval in full
saturation and the remaining time steps with decreased saturation.

4.5 parameter-space visualizations

The main contribution of this chapter lies in visualizing the parameter-
space partitioning that is induced by the clustering in the similarity
space as described in Section 4.4.1.

4.5.1 Hyper-slicer

For addressing task T4.3 and showing an undistorted view of the pa-
rameter space that also includes to directly read of the parameter values,
we extend the hyper-slices as proposed by van Wijk and van Liere [353].
In the following, we will refer to our enriched hyper-slice visualization

88 analysis of partitionings

as hyper-slicer. Hyper-slices aim at visualizing a multi-dimensional space
by showing an axis-aligned slice for pairwise combination of dimensions.
Similar to SPLOMs, the slices are shown in a matrix layout but they do
not show a projection of the data but instead only show the data that is
in the slice. Thus, they can also be seen as a multi-dimensional general-
ization of slice viewers equivalent to SPLOMs being a multi-dimensional
variant of scatterplots.

To apply hyper-slices to a multi-dimensional parameter space, we see
each parameter as forming an axis of this space. Then, the parameter
space can be sliced around a focus point that corresponds to one set of
parameter values and can be changed interactively by the user. Creating
a hyper-slice visualization for 3D data around a focus point is shown
schematically in Figure 4.7. The resulting hyper-slices show a 2D plane
for each pairwise combination of axes where each of the planes contains
the focus point. In our visualization, we directly encode the values of the
focus point for the parameters on the axes of the slice by a gray cross.
Thus, we provide some orientation in the multi-dimensional space. To
obtain the exact information about the focus point in all dimensions,
we show the corresponding parameter values on the diagonal below
the names of the parameters. The hyper-slicer provides zooming and
enlarging single slices, allowing for a more detailed investigation of the
slices.

In general, hyper-slices, like SPLOMs, do not scale well when the num-
ber of dimensions increases. Therefore, we include an automatic reorder-
ing of the dimensions based on the correlation between a single parame-
ter and the simulation result. Thus, users can focus on the most relevant
dimensions. To facilitate this, manually hiding a set of dimensions is also
possible, leading to a reduced dimensionality in the visualization.

4.5.1.1 Partitioning Visualizations

As we want to use hyper-slices to show the partitionings, we adapt the
approach. To show the partitioning information, we visualize to which
segment the samples belong, the boundaries of the segments, and their
uncertainties. Our different visual encodings are illustrated in Figure 4.8.

The parameter-space samples are drawn as dots. We differentiate be-
tween sample points that belong to the currently shown slice by showing
them with a white outline, while other samples are shown with a black
outline. Showing all sample points, including those outside the slices,
provides context about their location in the parameter space. For sam-
ples located on the slice, we color-code them according to which cluster

4.5 parameter-space visualizations 89

0
0 1

c

1
Distance encoding Projection of segment

b 0 1

c

1

b
0

a
0.5

b
0.125

c
0.625

d
0.5

Figure 4.8: The hyper-slicer (center) shows the parameter space of the synthetic
dataset. The sample points with white circles lie inside the slice, while
those shown as black circles are located outside of the slice. The focus
point is shown as gray lines, and the colors indicate the different seg-
ments. The slices can be enriched with an uncertainty visualization by
changing the saturation (left) or a projection of the segment bound-
aries of selected clusters shown using a dot texture (right).

they belong, where we use the colors as assigned in the dendrogram and
which are also used in the other visualizations.

However, in the case of parameter spaces that are sampled on an axis-
aligned grid, multiple samples might overlap because they are projected
to the same positions in the slices, as shown in Figure 4.8. To show which
sample points are projected to the corresponding position, the users can
hover over the points, and a list of all points in that position is shown.
In that list, we color code the names of the ensemble members by using
the cluster colors. Overall, the encoding of the sample points resembles
a SPLOM in which the points lying in the slices defined by the hyper-
slicer’s focus point are highlighted.

To visualize the parameter-space partitioning, we color-code the corre-
sponding slices and use the cluster colors as defined in the dendrogram.
The clustering of the similarity space can be transferred to the parameter
space by assigning the parameter-space samples to the same clusters as
their simulation outcome. To obtain a dense partitioning of the param-
eter space, we use multi-class support vector machines (SVMs) where
we use the implementation provided by libsvm [59]. The SVM is trained
based on the clusters assigned to the sampling points. For the kernel, we
use radial basis functions while we leave the choice of the parameters C

(cost for wrong classifications) and γ (can be interpreted as the range
of influence of single samples) to the users. As wrong classifications are
undesirable, we show a warning in case they occur. Then, the users can
adapt the parameters to find a more reasonable partitioning.

90 analysis of partitionings

An alternative to computing the partitioning in parameter space would
be the approximation of a Voronoi diagram. However, using SVMs leads
to smoother boundaries, especially in the case of sparsely sampled pa-
rameter spaces.

We discretize a regular grid to obtain a dense partitioning of the pa-
rameter space. Then, we use the SVM to determine the cluster to which
the grid points belong. The resolution of the grid can be chosen inter-
actively by the users depending on the analysis goal. As parameter-
space samplings are often sparse due to the high simulation costs, a
relatively low grid resolution is often sufficient. While lower resolutions
are computationally less expensive, they might induce stair-case artifacts
as shown in Figure 4.8. While higher grid resolutions reduce the artifacts,
they are also computationally more expensive and might lead to short
delays. After assigning each grid point to a cluster, the partitioning in
the selected slice can be shown directly analogous to a slice viewer.

Independent of the method, the computed partitioning and its bound-
aries are only an approximation. As the simulation results between the
existing sample points are unknown, it is unavoidable to compute fur-
ther simulation for more exact boundaries.

4.5.1.2 Uncertainty Visualization

To provide information about the uncertainty in the corresponding re-
gions of the parameter spaces, it should be directly included in the vi-
sualization. This also provides hints to the domain experts on which
parameter-space regions are undersampled and benefit most from addi-
tional simulations. The uncertainty in the partitioning is mainly caused
by assigning the color of the cluster to each grid point independent of
the distance to the nearest parameter-space sample. Thus, some parts of
the parameter space are assigned to partitions despite having no sam-
ples in this region. Therefore, we aim to visually encode these regions
by adding an uncertainty visualization where we encode the Euclidean
distance to the nearest sample point.

To encode the distances, we vary the saturation of the colors used to
show the partitioning. As the different parameter values might span very
different ranges, we normalize them before calculating the distances. Af-
ter computing distances for all grid points, we also normalize the dis-
tances to the interval [0, 1]. Then, we can modify the saturation for each
sample by multiplying the color values by 1− d where d is the normal-
ized distance value. Thus, the most distant grid points get assigned de-
saturated colors, while the grid points in the same position as parameter
sample points get assigned a fully saturated color. An example of a slice

4.5 parameter-space visualizations 91

that shows the variation in saturation based on the distances is presented
in Figure 4.8 (left). In this regularly sampled parameter space, one can
observe that the uncertainty is highest between the sample points lead-
ing to the least separation. Close to the sample points, the colors show
the highest saturation.

While the uncertainty encoding of the regularly sampled parameter
space meets our expectations, it is beneficial for irregularly sampled pa-
rameter spaces where the position of the nearest sample point is unclear.
Besides showing uncertain regions, the segment boundaries become less
clear if they are very distant from any parameter-space sample. This pre-
vents the users from overinterpreting them even though they are uncer-
tain. However, as this might introduce distractions, the feature can also
be turned off if the uncertainty is not important for the current analysis
task.

4.5.1.3 Boundary Projection

As the hyper-slice visualization only shows the partition around the fo-
cus point, it only shows a small fraction of the parameter space. For in-
vestigating the whole parameter space and understanding the extent of
specific segments, a large amount of time-consuming exploration would
be necessary. Additionally, many manual changes of the focus point im-
pose a high cognitive load. Therefore, our hyper-slicer includes the possi-
bility of projecting the boundaries of a selected segment to the currently
shown slice. This hints towards the parameters that need to be varied to
investigate the boundaries of the parameter-space segments.

To encode the extent of the segments, we use a dotted texture that re-
sembles stippling. We overlay a texture that contains dots on a grid that
is rotated by 45◦. The dots are encoded in the same color as the selected
similarity cluster to provide a visual extension to the corresponding seg-
ment. At the same time, the segmentation shown in the slice remains
visible.

For defining the region in which the texture overlay needs to be shown,
we create a binary mask bkij for the projection along parameter Pk in the
slice spanned by Pi and Pj with i, j,k ∈ {1, ...,n} for an n-dimensional
parameter space. We assume i < j < k without loss of generality and
denote (p1, ...pn) the current focus point where pi is a parameter value
in the range spanned by parameter Pi. The mask can be computed for
each point (x,y) as

bkij(x,y) =

{
1 if ∃z : l(p1, . . . , x, . . . ,y, . . . , z, . . . ,pn) = sm

0 otherwise

92 analysis of partitionings

P3

P2
P1

(a) Boundary projection. (b) Boolean operations.

Figure 4.9: The schematic drawing illustrates the projection of the boundaries of
the red segment on the slice spanned by parameters P1 and P2. a)
The red plane separates the red and the blue segment. The projection
on the plane is shown as a dotted texture. b) Projections along differ-
ent dimensions formed by different parameters yield different results.
Projection along different parameters can be combined by Boolean op-
erations, like here for the operation P3 or P4.

where l(p1, ...,pn) is the parameter-space label at the point (p1, ...,pn)
and sm the label of the segment. The mask indicates whether the grid
cell around point (x,y) shall exhibit the texture.

The projection is illustrated in Figure 4.9 on the example of a 3D pa-
rameter space. In this example, the red plane partitions the parameter
space into two segments. Figure 4.9a shows how the red segment is pro-
jected on the plane spanned by parameters P1 and P2 along the axis of
P3. The boundaries are projected on the slice, and the shape’s interior is
filled with a red-dotted texture.

The resulting slice is also shown in Figure 4.9b. Assuming that the
dataset contains a fourth parameter P4, the projection could also be
performed along that direction, potentially resulting in the projection
shown in the top right of Figure 4.9b. This methodology allows for in-
vestigating projections along single dimensions. However, it might also
be desirable to investigate several parameters at once. Therefore, we al-
low for combining different projections using Boolean operations. For
example, for considering the union of the projections along P3 and P4,
the Boolean expression “P3 or P4” can be used, which results in a visu-
alization as shown in Figure 4.9b in the bottom.

For evaluating a Boolean expression, the binary mask for each param-
eter is computed. The operations are then computed on the masks. For
example, for the union discussed above, the or-operation is applied on
the masks for parameters P1 and P2. Arbitrary expressions are possible
where all parameters can be included. However, the dimensions shown

4.5 parameter-space visualizations 93

on the axes are excluded for the respective slice. In our tool, the most
common Boolean operators like and, or, not, xor, nor, nand, implication
and equivalence are included. A Boolean expression using the parame-
ters and the operators can be directly entered as text to the graphical
user interface. To facilitate the projection of the entire parameter space,
which is the most common application, we also introduce the keyword
Complete, which can be entered as a Boolean expression. By using this
keyword, the union over all parameters is shown.

Figure 4.8 (center) shows the hyper-slicer for the synthetic dataset
with the uncertainty visualization and the boundary projection turned
off. The slice spanned by parameters a2 and a3 includes all clusters.
Therefore, we choose this slice to verify our enrichments and enlarge
the slice for a more detailed analysis. This slice with an activated uncer-
tainty visualization is shown on the left. As previously discussed, the
saturation decreases when the distance to the parameter-space samples
increases and reaches its minimum between the sample points, where
the distance to all neighbors is the largest. When hovering about one
of the sample points, the corresponding points are shown in an overlay.
Based on the colors, we can see that in this position, points belonging
to the red cluster and those belonging to the green cluster are projected.
When selecting the green cluster and activating its projection, the slice
shown in the right of Figure 4.8 is obtained. The cluster only occurs for
smaller values of a2 and larger values of a3, and the boundary is diago-
nal, which fits the definition of the dataset that can be seen in Figure 4.2.

4.5.1.4 Reducing the Dimensionality

Similar to SPLOMs, hyper-slices do not scale well with the dimensional-
ity of the data. For the application to parameter spaces of spatio-temporal
simulation ensembles, the dimensionality usually does not become very
large. However, limiting the number of dimensions to reduce the num-
ber of slices shown in the matrix might still be desirable. For this pur-
pose, we allow for reducing the dimensionality of the parameter space
by allowing the users to select the parameters that should be shown. To
facilitate the selection, we support re-ordering the parameters based on
their influence on the simulation outcome. The influence is measured by
the absolute value of the Pearson correlation coefficient CPi

between the
parameter values Pi and the first principle component of the similarity
embedding. Thus, the correlation coefficient can be computed as

CPi
=

∑n
j=1(Pi(rj) − µPi

)(v(rj) − µv)√∑n
j=1(Pi(rj) − µPi

)2
√∑n

j=1(v(rj) − µv)2
,

94 analysis of partitionings

Simulation run

Barycenter

Selected cluster

Figure 4.10: Each point in the parameter sample embedding encodes one simu-
lation run. The distances encode distances in parameter space, and
the color show to which cluster the corresponding simulation run be-
longs. The barycenters of the points are shown as larger points and
can be used for navigating the hyper-slicer. Selected clusters for in-
detail investigation in the hyper-slicer are marked with a cross.

where v(rj) is the first principle component of the similarity embedding
for ensemble member rj and µPi

and µv are the means of Pi(rj) and
v(rj), respectively. The correlation values can be visualized using a bar
chart. This allows the users to investigate the correlation values and de-
cide which and how many dimensions should be included in the analy-
sis.

4.5.2 Parameter-Space Embedding

While the hyper-slices allow for detailed visualization of the segments,
it does not provide a complete overview. Investigating the whole param-
eter space would require a large amount of interaction. Therefore, we
include an embedding of the parameter space (see task T4.2) that pro-
vides an overview and facilitates navigation.

We experimented with two options for the parameter-space overview
visualization. In the paper presenting the hyper-slicer [100], we use an
MDS projection of the parameter-space samples to create a 2D embed-
ding of the parameter space which we refer to as parameter-sample em-
bedding. For computing the embedding, the distances in the parame-
ter space are used. This embedding directly shows the parameter-space
samples and allows for investigating the distribution of the parameter
sample points belonging to the different clusters. Thus, the clustering
quality can also be evaluated in parameter space, and one obtains a first
impression of how the samples corresponding to a particular cluster are
distributed in parameter space.

4.5 parameter-space visualizations 95

This approach is shown as an annotated example in Figure 4.10. Each
point of the embedding defines a simulation run where the color rep-
resents the cluster color. An additional point, shown in increased size,
represents the barycenter of the cluster. The primary purpose of these
barycenter points is to facilitate the selection of the cluster’s center as a
focus point for the hyper-slicer. However, including the barycenters as
additional information should be independent of the projection layout.
Otherwise, changing the clustering would also modify the projection,
which is undesirable. Therefore, the barycenters are computed in the
projection instead of in the multi-dimensional parameter space.

For the synthetic dataset, the parameter-sample embedding shown in
Figure 4.10 shows a regular structure induced by the parameter-space
sampling. Despite the overlap induced by the dimensionality reduction,
one can see that the segments seem to be connected, which meets our
expectations. Even though the hyper-slicer allows for resolving the over-
lap, identifying connections between the different segments would be
more difficult for more complex datasets.

Therefore, we propose using the segmentation embedding discussed
in Chapter 3 as an alternative encoding. The regular grid used to com-
pute the partitioning can be directly used as an input to the algorithm.
However, as the clusters induced in similarity space are not necessar-
ily connected in parameter space, each segment needs to get assigned
a unique ID. After computing the embedding, all segments could be
colored according to the cluster colors set in the dendrogram.

The parameter-space partitioning embedding directly encodes joint bound-
aries between the different segments and visually encodes the sizes of
the segments and the lengths of the joint boundaries. It also allows
for unambiguously identifying whether the clusters in similarity space
transfer to connected regions in parameter space or to a set of sepa-
rated segments. Further, the interaction of selecting the low-dimensional
representation of a segment to switch to its barycenter would be more
intuitive than selecting representative points that only vary in size com-
pared to the sample points. On the other hand, the segmentation embed-
ding does not show the parameter-space samples and their distances
to each other, which is directly encoded in the MDS embedding of the
parameter-space samples. Nevertheless, we propose to use the segmenta-
tion embedding as it provides a better overview of the parameter space
and, thus, better fulfills task T4.2. However, as both approaches are in-
cluded in the approach, the users could also interactively switch to the
parameter-sample embedding.

The partitioning embedding of the 4D parameter space of the syn-
thetic dataset is shown in Figure 4.11. One can see that the red segment

96 analysis of partitionings

Figure 4.11: The parameter-space partitioning embedding of the synthetic dataset
reveals its topological structure and the sizes of the respective seg-
ments.

is the largest, and the green segment is the smallest one. Additionally,
all segments are connected to the boundary. Further, the four clusters
in the similarity space also form clusters in the parameter space. These
observations agree with the definition of the dataset. While the sizes
of the segments can be estimated in the parameter sample embedding
shown in Figure 4.10 based on the number of samples belonging to the
corresponding clusters, the segmentation embedding takes the relative
sizes of the partitions into account, which might deviate from the rela-
tive number of sample points, especially for irregular samplings. How-
ever, the very regular sampling structure, clearly visible in the parameter
sample embedding, is not encoded in the segmentation embedding as it
does not contain the parameter-space samples.

4.6 comparison to alternative visual encodings

Our hyper-slicer visualization aims to visualize multi-dimensional data
for which also other methods exist. Therefore, we will directly compare
the hyper-slicer to SPLOMs and PCPs, which are the most common tech-
niques for the (interactive) visual analysis of multi-dimensional datasets.
Here, we focus on a comparison to the basic version of these visual-
izations even though several improvements in different directions exist.
However, our approach could also be derived from SPLOMs instead of
hyper-slices if one starts with the parameter-space samples and adds the
visualization of the partitioning. Comparing against the base variants
ensures that these variants are well known and used in practice, while
more advanced and feature-rich variants might be rare, or we might
even introduce new visual encoding against which we would compare.
In addition, we only compare the visual encoding of the hyper-slicer, not
our whole analysis system.

4.6 comparison to alternative visual encodings 97

0

1

0.5

(a) PCP.

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

(b) SPLOM.

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

0

0

0

(c) Hyper-slicer.

Figure 4.12: The direct comparison of PCP (a), SPLOM (b), and hyper-slicer (c)
for a regularly sampled parameter space reveals problems with over-
plotting in the first two approaches.

Parameter spaces are often sampled on structured grids like for the
blood flow dataset (see Section 4.8.1) or the microswimmer dataset (see
Section 4.8.3). Therefore, we start by comparing the visualization of reg-
ularly sampled parameter spaces on the example of the synthetic dataset
as shown in Figure 4.12. In the PCP and SPLOM, the lines and points
are color-coded according to the clusters, analogous to the hyper-slicer.
Both PCP and SPLOM suffer from significant overplotting, which can
be explained by regular sampling. Especially for PCP, many lines are
drawn on top of each other because all possible combinations of pa-
rameter settings are present in the dataset. This also explains why no
(visible) purple line exists between the axes representing parameters a1
and a2. Besides the problem that some lines and points are not visible
in both visualizations, it is not clear how many points or lines are drawn
on top of each other, and the rendering order strongly impacts the visual
output. Therefore, it is impossible to decide if the red cluster only occurs
for small values of a3 or if this observation is due to overplotting.

In the hyper-slicer, however, the parameter ranges spanned by the seg-
ment could be derived by using the boundary projection. Additionally,
the rendering order is very clear, as only a subset of the data is shown
immediately due to the slicing of the parameter space. Only from observ-
ing the visualization, it is also not clear how many sampling points are
projected on each position as the sampling point visualization resembles
a SPLOM. Our approach allows hovering over the sampling points to de-
duce this information. This is an addition that could also be added to
PCP and SPLOM, but solving the other issues in these visualizations is
not straightforward. Order-independent blending or transparency might
provide starting points to mitigate these issues, but these methods could
also lead to mixed colors that are difficult to interpret.

98 analysis of partitionings

0

1

0.5

(a) PCP.

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

(b) SPLOM.

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1
0

1

0 1

0

0

0

0

(c) Hyper-slicer.

Figure 4.13: The comparison of PCP (a), SPLOM (b), and hyper-slicer (c) for a
parameter space with unstructured sampling shows that PCP and
SPLOM do not show the shapes of the segments as clearly as the
hyper-slicer, see green and purple regions.

Additionally, the hyper-slicer facilitates obtaining a geometric under-
standing of the multi-dimensional space. It becomes more obvious when
investigating parameter spaces with an unstructured sampling that oc-
curred, for example, in the semiconductor dataset (see Section 4.8.2). The
three visualization techniques are shown for irregular sampling in Fig-
ure 4.13. Even though overplotting is less prominent, it is still challeng-
ing to identify structures in the multi-dimensional space. Axis-aligned
separations like the one between the red and the blue cluster caused by
parameter a3 can be identified easily in both visualizations. Neverthe-
less, already linear, diagonal structures for the boundaries between the
purple and green clusters are barely recognizable. However, approaches
such as edge bundling in PCP or density-based encodings in SPLOMs
might reduce this problem but cannot fully overcome them. Zhou and
Weiskopf [400] proposed an explicit extension to show correlations in
PCPs, but their approach only deals with linear behavior. In real-world
data, one cannot assume the boundaries to be linear. Therefore, we opt
for showing only slices of the data around a focus point and, thus, fo-
cussing on a subset of the data which can be changed interactively. While
the projection of the boundaries still provides the option to show data
outside of the slices, interactively changing the focus point and slicing
through the volume facilitates building a geometric understanding.

4.7 analytical workflow

In this section, we discuss a typical analytical workflow on a more ab-
stract level, while concrete application examples are presented in Sec-
tion 4.8. A typical analysis, as depicted schematically in Figure 4.14,

4.7 analytical workflow 99

Similarity Space Parameter Space Simulation Outcome

Ensemble Overview

Clustering Hyper-Slicer

Detail Visualizations

Interactive
cluster definition

C
lu

st
e
ri

n
g

S
e
le

ct
 m

e
m

b
e
r

Parameter-Space Overview

Select
segments

Iterative Exploration

Figure 4.14: The analytical workflow allows for interactive visual analysis of dif-
ferent levels of details.

starts with obtaining an overview of the simulation ensemble for which
the similarity embedding and the temporal evolution plot can be used.
When investigating the temporal variation over time, the users might
identify time ranges of particular interest and select them in the tem-
poral evolution plot. The clustering dendrogram can be used to find a
suitable clustering which is changed by varying the pruning level and
the linkage algorithm when investigating the resulting clusters in the
similarity embedding until a suitable clustering is identified.

The induced parameter-space partitioning can be checked in the parti-
tioning embedding, where the users can identify if the parameter-space
partitions are connected and study the topology of the partitioning to-
gether with the segment sizes. Additionally, the parameter sample em-
bedding can be used for observing which parameter sample belongs to
which cluster. Both visualizations that provide an overview of the param-
eter space allow for identifying single segments that should be investi-
gated in more detail in the hyper-slicer. Here, the segments’ boundaries
and extent are investigated in more detail. To reduce the dimensionality
of the hyper-slicer, the correlation between parameter values and sim-
ulation outcome is used to re-order the hyper-slicer and deselect less
interesting parameters. To easily navigate the hyper-slicer, clusters can
be selected in the parameter sample embedding or segment embedding.
The boundaries of a selected cluster can be projected on the slices to
investigate the cluster’s extent.

100 analysis of partitionings

Ensemble members can be selected by clicking on the samples shown
in the hyper-slicer to investigate the simulation outcome and understand
the characteristic behavior of the clusters. The corresponding simulation
run is then shown in a slice viewer or a volume renderer. These simu-
lations can also be used to investigate the variation of single ensemble
members over time by varying the visualized time step. In the interactive
analysis, it is common to frequently switch between the different levels
of detail and go from a higher level of detail back to a less detailed vi-
sualization, for example, to vary the clustering or adapt the chosen time
interval.

4.8 case studies

In the following, we will present three case studies from different do-
mains to explain the practical applicability of our approach. All reported
timings were obtained on a laptop with a 1.6GHz Intel Core i5 processor.

We also collected feedback in an informal setting from two professors
and two graduate students involved in creating the three datasets. The
feedback was collected in a single session which we started by providing
a short introduction to our tool and the respective visualizations. After
that, the domain experts worked with our tool to explore their datasets.
Based on that, they also gave us feedback.

4.8.1 Blood Flow

We first study a dataset that investigates the blood flow through vessels.
Such numerical simulations can be used to define biomarkers that allow
for identifying certain diseases [133]. The data analyzed in this work
was created to simulate the flow through a brain aneurysm model to
compare simulation models with measured data [204]. Finding the in-
put parameters that best describe the experimental data is a key task in
analyzing this kind of data. The simulation data analyzed in this work
was created using a Lattice Boltzmann method. The dataset consists of
129 runs with 8 to 42 timesteps. We study the magnitude of the flow
field on a regular grid with a spatial resolution of 128× 128× 128. The
simulation requires five input parameters: the viscosity of the fluid (vis-
cosity), its density (density), a characteristic velocity (velocity), a character-
istic length (length), and a parameter defining the boundary conditions
(Bouzidi). The last parameter equals 1 if Bouzidi boundary conditions
were used and 0 otherwise.

Thus, for this dataset, we analyze a 5-dimensional parameter space.
The dataset was analyzed together with two domain experts. One of

4.8 case studies 101

1
.
P
C

0 2.5 5
t[s]

(a) Temporal evolu-
tion plot.

(b) Parameter seg-
ment embedding.

(c) Parameter sample
embedding

(d) Correlation

length
28

velocity
380

Bouzidi
0.75

(e) Hyper-slicer.

Figure 4.15: For the analysis of the blood flow dataset, the time interval shown
in the temporal evolution plot (a) is selected. The parameter segment
embedding (b) reveals that the four clusters correspond to connected
regions in parameter space. However, the parameter sample embed-
ding (c) shows that the parameter Bouzidi separates the parameter
space into two groups, and the blue segment is the only one that oc-
curs in both of them. Based on the visualization of the correlations
between the first principal component and the parameters (d), the
hyper-slicer (e) is limited to the three relevant parameters.

them created the simulation ensemble. The other one performed experi-
ments that the simulation should describe.

To compute the simulation runs’ similarities, 32, 768 Monte Carlo seed
points were used per timestep. When investigating the temporal evolu-
tion plot shown in Figure 4.15a, a transition phase in the beginning can
be observed. Therefore, the following analysis is based on the simulation
output starting at 0.7 s. Based on the distance matrix DT for the different
timesteps, the distance matrix DR, which stores the distances between
the runs, can be computed in 1.0 s.

After computing the similarities, the similarity plots and the dendro-
gram are used to find a suitable clustering. By interactively testing dif-
ferent linkage algorithms, Ward’s minimum variance method (ward.D)
was chosen as the most suitable as the identified clusters agree well
with the clusters visible in the similarity embedding. The height shown
in the clustering dendrogram (see Figure 4.1, lower left) directly points

102 analysis of partitionings

towards a prominent separation in two clusters which can be selected
by adapting the pruning level. The resulting partitioning is induced by
the parameter length, as can be found using the hyper-slicer. For further
analysis, the partitioning is refined to contain four clusters.

Next, the induced partitioning of the parameter space is investigated
in the overview visualizations. In the parameter segment embedding
shown in Figure 4.15b, one can identify that the violet segment is sig-
nificantly smaller. Additionally, all segments are connected except the
green and the violet ones. The samples are divided into two groups in
the parameter sample embedding (see Figure 4.15c). When interacting
with the hyper-slicer shown in Figure 4.15e, one can see that the divi-
sion is along the parameter Bouzidi, which only takes the values 0 and
1. Only the blue segments occur in both parts and, therefore, for both
parameter settings. Thus, the blue cluster is selected for further analy-
sis in the hyper-slicer. When observing the correlation values between
the first principle component of the output and the parameter values
(see Figure 4.15d), only three of the parameter values lead to significant
correlations. Therefore, the parameters viscosity and density are hidden
in the hyper-slicer to reduce its dimensionality. The absolute values of
the correlation also confirm that the parameter length is more influential
than the parameter Bouzidi, which is surprising for the domain expert
even though he expected the parameter length to be influential. The blue
and violet clusters only occur for small lengths, which results in a high
spatial resolution of the simulation domain. The boundary conditions
do not separate those two clusters. As confirmed by a projection of the
boundaries, the violet cluster only occurs for high velocities and without
Bouzidi boundary conditions. This can be interpreted as a growing in-
fluence of the boundary conditions with an increased spatial resolution.
For understanding the individual clusters, single ensemble members can
be investigated in more detail using a direct volume rendering or a slice
viewer, as shown in Figure 4.1 for this dataset.

4.8.2 Semiconductor Quantum Wire

A quantum wire describes a wire where quantum effects influence the
transport properties. When modeling these kinds of systems, they can be
described as a one-dimensional spatial structure. The dataset used in this
section investigates how light is emitted from a semiconductor quantum
wire [358]. Here, it is interesting to observe the phase space spanned
by the spatial dimension x and the additional dimension k leading to a
two-dimensional domain.

4.8 case studies 103

(a) Segmentation embed-
ding.

(b) Slice Viewer.

(c) Clustering dendro-
gram.

pulse delay

exciteOverGap

sigmaX

pumparea

0.00024

9.61

23.01

0.56

0

0

0.0017

0.0017

15

30

0.1

29.9

0.1 29.9 15 30

0.80.3
0.8

0.3

(d) Hyper-slicer.

Figure 4.16: The semiconductor dataset’s parameter space is divided into 7 clus-
ters based on the pruning level of the dendrogram (c). The parameter-
space segments are shown in the embedding (a) and can be investi-
gated in more detail in the hyper-slicer (d), where the purple cluster
is selected for projection. It is characterized by two separate peaks
with a small connection (b).

The simulation model depends on four different parameters in total,
namely the energy difference between the laser pulse and the bandgap
(exciteOverGap), the spatial variance of the laser pulse (sigmaX), the de-
lay between the laser pulses (pulseDelay) and the pulse area (pumparea).
The simulation ensemble consists of 150 runs with 70 timesteps each,
where the parameter space was sampled randomly. The resulting two-
dimensional scalar field for the phase space has a spatial resolution of
300 × 200. An exemplary heatmap visualization of the phase space is
shown in Figure 4.16b.

We used 16, 384 Monte Carlo seed points per timestep to compute
the similarities. To align the temporal evolution as well as possible, an
optional time shift of up to 10% is permitted in the aggregated similarity
computation. This led to a computation time of 137 s for the distance
matrix DR.

One obtains the dendrogram shown in Figure 4.16c using complete
linkage. In the first analysis step, a pruning level leading to two clusters
is selected. The hyper-slicer reveals small values for the parameters pulse
delay and exciteOverGap. Thus, these parameters significantly influence
the simulation outcome, which confirms the hypothesis of the domain
experts that the other two parameters are less influential.

104 analysis of partitionings

Figure 4.17: A system of seven active particles shows a complex motion due to
the hydrodynamic interactions between the particles. One interesting
observation is a rotation of the central particle, indicated by the red
arrow.

Next, the domain expert refines the cluster as shown in Figure 4.16.
The corresponding parameter-space partitioning embedding reveals that
not all clusters found in similarity space are also connected in parame-
ter space. For example, the orange cluster is separated into multiple seg-
ments. Additionally, one can identify the green and the red clusters as
being the largest. The domain expert is especially interested in the pur-
ple cluster. After selecting it, its boundaries from outside the plane can
be projected in the hyper-slicer. The projection shown in Figure 4.16d
reveals that this segment only occurs for small values for the param-
eter pulse delay and the parameter exciteOverGap lies between 3 and 9.
Thus, the cluster is located in a clear region in the parameter space, even
though the segmentation embedding reveals that the cluster is split into
two segments. When selecting single ensemble members and visualiz-
ing them in the slice viewer, the domain expert observes two separate
peaks with a small connection (see Figure 4.16b) that he identifies as
characteristic of this cluster. Our visualizations allow for connecting this
characteristic behavior back to the input parameter settings.

4.8.3 Active Crystal

Active particles are particles that can use energy from their surrounding
to propel themselves [28]. For this use case, we consider active crystal-
lites, which are small active crystals where each particle is fixed in its po-
sition but can rotate freely [101]. The active crystallites investigated here

4.8 case studies 105

(a) Temporal evolution plot.

(b) Similarity embed-
ding.

(c) Clustering dendro-
gram.

(d) Hyper-slicer.

Figure 4.18: The time interval of interest for the microswimmer dataset is selected
in the temporal evolution plot (a). The similarity embedding shows
five similarity clusters (b) that can be chosen as separate clusters in
the clustering dendrogram (c). The induced parameter-space parti-
tioning can then be analyzed in the hyper-slicer (d).

comprise seven particles forming a hexagon with one particle in the cen-
ter, see Figure 4.17 for an example. The particles can either be spherical
or ellipsoidal, which allows the shape of the particle to be described by
an aspect ratio a. The particles, also referred to as microswimmers, per-
form a swimming motion. The propulsion mechanism is modeled by the
so-called squirmer model, driven by a parameter beta [208]. Additionally,
the particles may be influenced by Brownian motion. The strength of the
influence compared to the propulsion speed is described by the Péclet
number Pe. The particles create a flow field by their self-propulsion, lead-
ing to a complex interaction between them. However, these simulations
also allow for studying the influence of an additional external flow field
with a velocity magnitude v_ext surrounding the active crystallite. This
dataset aims to understand the particles’ complex motion and find dif-
ferent kinds of behavior. This leads to different states of matter whose
extent in parameter space is of interest.

The originally simulated data consists of a flow field for the velocity of
the surrounding fluid as well as a scalar field that describes the pressure.
Additionally, the orientations for each particle are stored in each step
leading to a set of time-varying orientation vectors. The simulation out-
come depends on the five different driving parameters described above.

106 analysis of partitionings

In the following, we use our approach to understand the parameter
dependency of the self-organization of small swimmers. In this chapter,
we investigated the pressure field of the flow simulation as the simula-
tion output, which depends on the five different input parameters. The
parameter Pe is studied on the logarithmic scale for a more meaningful
analysis. The ensemble contains 115 runs with 18 to 308 adaptive time
steps each. The scalar fields have a resolution of 128× 128× 64.

The temporal evolution of the ensemble is shown in Figure 4.18a. We
immediately observe that the runs vary in length, and there is little vari-
ation in the latter time steps for those runs that cover a long time. Ad-
ditionally, we observe a short transition phase at the beginning of the
simulation. Therefore, the time interval for the following analysis is lim-
ited from 1.3ms to 19.7ms. This time interval was used to compute the
aggregated distance matrix DR in 17.8 s.

The similarity embedding created based on this matrix DR is shown in
Figure 4.18b and reveals five clusters. Using ward.D2, we obtain a hierar-
chical clustering as shown in the dendrogram in Figure 4.18c. In the den-
drogram, we select a pruning level such that the clustering matches the
clusters in the similarity embedding. In this clustering, four of the clus-
ters only consist of single runs. These correspond to runs that strongly
differ from all the others and can be considered outliers. The hyper-slicer
(see Figure 4.18d) shows the locations of these runs in parameter space.
They all share the parameters of beta= 3, v_ext= 1, a= 2 and also con-
tain the same Péclet number. Thus, the distance between the particles is
the only parameter that separates these runs. Therefore, our approach
allowed for finding a parameter region where the simulation runs sig-
nificantly differ from all the others. This region would benefit from a
denser sampling.

4.9 discussion

We collected feedback from all four domain experts that explored their
data with our tool. They consider the tool very helpful and acknowl-
edge that it facilitates understanding the parameter’s influence on the
data. The importance of linking abstract visualizations to the explicit
spatial visualizations of individual ensemble members was stressed by
two domain experts.

The domain expert who created the blood flow dataset obtained new
insights into the importance of the different parameters. Our approach
also confirmed the prior hypothesis about the strong influence of the
boundary conditions and the characteristic length. The other domain
expert from the medical domain expressed interest in including her ex-

4.9 discussion 107

perimental data in the visualization. This would allow her to find the
parameter values that fit best the measured data.

The physicist who works on microswimmers mentions that he sees
new possibilities to analyze data with more than three parameters which
currently imposes large challenges in his domain. This usually leads
him to limit his analysis to fewer parameters, even though including all
of them might yield additional insights. The limitation in the number
of parameters might even lead to missing important phenomena. The
hyper-slicer supported him in obtaining a mental picture of the param-
eter space and its partitioning, so he rated this visualization as helpful.
He also positively highlighted the high information density.

The physicist who created the semiconductor simulations stated that
our analysis approach shortens the time for the analysis process. Addi-
tionally, it pointed him toward parameter dependencies that he would
like to investigate further by creating additional simulations. Before ex-
ploring his data with our tool, he was unaware of this region of interest
in the parameter space. He sees a potential application of our approach
in identifying sub-spaces of the parameter space that are then used for
a more detailed analysis.

Overall, three of the domain experts highlighted our approach’s broad
applicability. However, they also saw some limitations and proposed
valuable suggestions for improvement. One of them desired more visual
support in investigating selected clusters. The uncertainty visualization
was also included after it was proposed by the first domain expert whom
we asked for feedback. This was then included before the sessions with
the other domain scientists. While the users rated the interactive explo-
ration as intuitive and helpful, it became clear that initial training is
necessary to work with our tool efficiently. However, as this is the case
for most more complex analysis tools, the need for training does not
reduce the intuitiveness of users who received the training.

In summary, the approach presented in this chapter allows for the
interactive visual analysis of simulation ensembles and their parameter
spaces. The approach supports creating and analyzing parameter-space
partitionings on different levels of detail. It received overall positive feed-
back from the domain experts, allowing them to confirm existing hy-
potheses and gaining new insights into their data.

Even though the approach enables the analysis of multi-dimensional
parameter spaces, the hyper-slicer does not scale well with an increase in
the dimensionality, and a manual selection, even if supported by an or-
dering, might not remain feasible for very high-dimensional parameter
spaces. However, densely sampling many dimensions in the parameter
space is barely possible for spatio-temporal simulation ensembles due

108 analysis of partitionings

to the high computational cost of running the simulations. Therefore,
we do not see a (practical) limitation in the limited scalability with the
number of dimensions.

One of the domain experts suggested selecting more than one clus-
ter at once for comparative analysis. While a generalization to several
clusters is straightforward, the visualizations quickly become cluttered.
Therefore, finding a solution to this problem is a topic for future research.
Additionally, a more structured user study for investigating the percep-
tion and navigation through multi-dimensional spaces would be benefi-
cial. This could also include a comparative evaluation of the parameter-
space overview visualizations. Since the segmentation embedding was
added after collecting feedback from the domain experts, it is unclear
if they rate this visualization as more intuitive and beneficial than the
MDS embedding of the parameter-space samples.

5
I N T E R A C T I V E D E F I N I T I O N O F C H A R A C T E R I S T I C
M E A S U R E S

The results of numerical simulations can often be summarized by partic-
ular characteristics, which allow for reducing the dimensionality of the
data. However, the definition of these characteristic measures strongly
depends on the data and analysis tasks. At the same time, defining these
measures is one of the core tasks in data analysis and can become very
challenging. Therefore, in this chapter, we propose an interactive tool for
the definition of characteristic measures.

One application area where the definition of characteristic measures
is particularly important are systems of active particles as introduced in
Section 4.8.3. In contrast to the previous chapter, we do not investigate
the scalar fields but instead focus on the orientation of the particles. In
this field of research, the characteristic measures commonly correspond
to order parameters which allow for differentiating between different
states of matter. In general, we consider a small active crystal consist-
ing of k active particles which are fixed in their positions but can rotate
freely. Even though the fixation does not allow translational motion, the
self-propulsion of the particles creates a complex hydrodynamic inter-
action which leads to rotations of the particles. Each of the individual
particles can be described by a three-dimensional direction vector which
describes the swimming direction of the particle. Thus, the whole sys-
tem for a single simulation run can be described by a time-varying 3k-
dimensional feature vector created by concatenating the feature vectors
of the individual particles. This results in the challenge of analyzing a
multi-dimensional feature vector varying over time. Defining character-
istic measures for this type of data allows for facilitating its visualiza-
tion. It also helps to differentiate between simulation runs for different
parameter settings and compare them concerning specific characteristics.
While many measures have been proposed for the analysis of 1D time se-
ries, it is unclear at the beginning of the analysis process which measure
is suitable for the analysis in a multi-dimensional domain.

109

110 interactive definition of characteristic measures

For a comprehensive analysis, it is important to define the measures
on two different levels of detail. First, the evolution over time should be
represented by the measure. Later, it is of interest to find a measure that
also aggregates over time and, thus, leads to a single scalar value for
each ensemble member. This significantly facilitates the analysis of, for
example, the dependency on input parameters.

In this chapter, we present a requirement analysis and task abstraction
from the domain of active systems. Based on this analysis, we propose
a workflow for interactively defining characteristic measures. We also
present ASEVis (Active System Ensemble Visualization), an interactive
visual analysis tool that implements the identified workflow. Its utility
is shown by presenting a use case where the temporal dynamics of active
systems are analyzed.

After providing an overview of the related work in this field (see Sec-
tion 5.1), we present a requirement analysis together with the task ab-
straction in Section 5.2. Section 5.3 described the workflow for defining
active measures, followed by the presentation of our visual analysis sys-
tem in Section 5.4. Finally, we present a use case for analyzing active
systems in Section 5.5.

The work presented in this chapter has been published in the follow-
ing paper:

M. Evers, R. Wittkowski and L. Linsen, ASEVis: Visual Explo-
ration of Active System Ensembles to Define Characteristic
Measures, 2022 IEEE Visualization and Visual Analytics (VIS),
150-154 (2022)

I implemented the approach and created the results. Raphael Wittkowski
provided feedback from the domain expert’s perspective. All authors
contributed to editing the manuscript.

5.1 related work

The definition of new measures in science is commonly performed us-
ing general-purpose programming tools like Jupyter notebooks [192] or
scripting interfaces to programming tools like programmable filters in
Paraview [4]. However, these approaches are limited in using interaction.
While the Javascript-based Observable notebooks [249] overcome this
limitation, they do not provide access to many of the standard data pro-
cessing libraries that are available in Python. Additionally, the general-
purpose notebooks do not offer visualizations that can be used directly
and target the problem at hand.

https://doi.org/10.1109/VIS54862.2022.00039
https://doi.org/10.1109/VIS54862.2022.00039
https://doi.org/10.1109/VIS54862.2022.00039

5.2 requirement and task analysis 111

Different visualization approaches target user-defined feature defini-
tion in multi-dimensional data [1, 41, 118, 323, 165]. Liu et al. [212, 211]
propose visualization tools where users can define features by sketching.
While sketching is easy for the user, it does not provide the large flexibil-
ity that comes with programming languages, which also allow defining
features and measures derived from the data at hand. Jänicke et al. [178]
use methods from information visualization to identify features. Cell-
packexplorer [305] neither targets the definition of derived measures
nor features but provides a visual aid for model building. Closest to
our approach is Paraglide [34] which supports the analysis of simula-
tion data on its input parameters. The authors state that constructing
derived measures is one of the requirements in their system, and it can
be closely integrated into different programming environments. How-
ever, it does not allow working with time-dependent data, which adds
additional challenges.

Many methods deal with the analysis of trajectory data, which can be
seen as multi-dimensional time-series, more generally [15]. Using pre-
defined features for the analysis [241, 247] assumes that the definition
of the feature is known before the analysis. Luboschik et al. [220, 221]
also make this assumption in their tools targeted at studying the influ-
ence of parameters. While Zhao et al. [398] allow for creating derived
time series interactively, they do not support aggregations. While most
of the approaches focus on the analysis of 2D or 3D trajectories [73, 146],
Amirkhanov et al. [12] recently proposed a generalization to 4D trajec-
tories. Wulms et al. [384] present a static visualization that reduces the
dimensionality of the trajectory data to only a single dimension.

5.2 requirement and task analysis

In this chapter, we analyze the motion of an active crystallite (a small
crystal) as introduced in Section 4.8.3. As we are only interested in char-
acterizing the temporal patterns in the system, we only consider the par-
ticle directions and do not analyze, for example, the flow field surround-
ing the particles. The particles’ motion considered in this chapter is char-
acterized by the propulsion mechanism (driven by the parameter beta)
as well as by the distance between the particles (parameter d) while we
keep the other parameters discussed in the previous chapter fixed. While
the state of every single particle can be described by a three-dimensional
particle direction vector, the state of the whole system is given by a multi-
dimensional feature vector that is formed by concatenating the individ-
ual particle direction vectors as shown schematically in Figure 5.1. In the
case of 7 particles, this leads to a 21-dimensional feature vector. Thus, the

112 interactive definition of characteristic measures

3 components per particle Time

A
g
g
re

g
a
ti

o
n

Aggregation

Time

Figure 5.1: Describing the dynamics of an active crystal: The motion of each par-
ticle is described by a 3D direction vector. Concatenating these vectors
leads to a multi-dimensional feature vector for each time step.

data can be described as an ensemble of multi-dimensional time series
or trajectories in the 21-dimensional space spanned by the different com-
ponents of the feature vector.

A common way to interactively define derived measures in physics
data is using Python scripts or Jupyter notebooks. However, as both
approaches commonly lead to static plots, an interactive exploration is
barely possible. Instead, even simple operations like zooming require a
recreation of the visualizations. Thus, understanding the properties of
the data leads to many recreations of the graphs. This interrupts the
workflow frequently, especially when finding new measures for aggre-
gation is one of the core tasks of the analysis. Based on our analysis for
studying the temporal behavior of this system [101], we identify a set of
requirements:

R5.1 Visualizations of the time series on different levels of detail shall
provide an understanding of the dataset.

R5.2 The users shall be able to define an aggregation measure over time
to reduce the dimensionality of the data. Simpler visualizations
over time based on this measure support a comparison of ensem-
ble members and the selection of time intervals of interest which
might also involve skipping transition phases.

R5.3 The definition of an aggregation measure over time shall aggregate
each ensemble member to a single scalar value. This aggregation al-
lows a comparison over the whole ensemble and creates a relation
to the input parameters. Visualizing the parameter space using the
aggregated measure allows for investigating different states of the
active system.

5.3 workflow 113

These requirements from the domain of active systems can be ab-
stracted to tasks using terms commonly used in visualization research.
The tasks support an easy generalization to other domains dealing with
multi-dimensional time series:

T5.1 Visualization for individual multi-dimensional time series (R5.1).

T5.2 Allow the users to interactively specify how to aggregate the val-
ues of a multi-dimensional time series into a single scalar value for
each timestep (R5.2).

T5.3 Visualization for the aggregated measures over time (R5.2).

T5.4 Allow the users to interactively specify how to aggregate the time
series to a single scalar value for each ensemble member (R5.3).

T5.5 Visualization of the parameter space using aggregated data values
(R5.3).

We will explain the workflow and the visual designs to address the
tasks and requirements in the following.

5.3 workflow

Based on the previously defined requirements and task, we define an in-
teractive visual analysis process that is shown schematically in Figure 5.2.
The analysis process starts by an iterative bottom-up procedure to define
the aggregation measures per time-step as well as over time. When in-
vestigating single ensemble members in detail (T5.1), the users obtain
an initial understanding of the data. By using an interactive Python pro-
gramming interface that is directly integrated in the visualization tool,
the users can define an aggregation for each time step (T5.2). This user-
defined measure can be observed in a visualization over time (T5.3). If
necessary, the definition of the aggregation can be refined. Otherwise,
an aggregation over time can be interactively defined by using the in-
teractive programming interface again (T5.4). The last step of the mea-
sure definition process is the observation of the aggregation (T5.5) which
might induce additional iterative refinement steps.

The bottom-up measure definition step is followed by a top-down vi-
sual analysis of the whole ensemble to obtain deeper insights into the
data. In a first step, the distribution of the aggregated values can be ob-
served in dependence of the parameter values (T5.5). Here, it is possible
to select ensemble runs of interest which could then be visualized over
time (T5.3). As the visualization over time still builds on aggregated data

114 interactive definition of characteristic measures

Investigate
single runs

Observe δ(t)
over time

Define measure δ(t)
for each timestep

Define measure
over time

Observe
aggregation

Observe
distribution

Investigate
over time

Analyze details

T5.5

T5.1

T5.2

T5.3

T5.4

Heatmap

Python Interface

Python Interface

Timeplot

Detail Visualizations
Task

Refine

Refine

Measure Definition Ensemble Analysis

Figure 5.2: The interactive workflow starts with a bottom-up analysis where time-
dependent and time-independent measures are iteratively defined.
These measures are then used for an analysis of the ensemble data.

for each time step, the users can select single ensemble members for an
investigation on the highest level of detail to understand the behavior of
the simulation run (T5.1).

5.4 visual analysis system

To implement this workflow, we design an interactive visual analysis
system ASEVis containing visualizations on three different levels of de-
tail. A screenshot of the tool ASEVis is shown in Figure 5.3. For the
detail visualizations, we combine an animation with a line plot showing
the evolution over time and a scatterplot matrix where we used PCA to
reduce the dimensionality of the originally 21-dimensional space. For vi-
sualizing the aggregations over time, we propose to use a line plot which
we refer to as a timeplot in the following. The most aggregated data can
be visualized in a heatmap spanned by the two parameter values. In
addition to the visualizations, the analysis tool contains an interactive
programming interface that allows for defining measures and is closely
linked to the different visualizations.

5.4.1 Detail Visualizations

Three detailed visualizations allow for understanding the behavior of
single runs, which forms the base for defining the measure and also sup-
ports the analysis on the highest level of detail (R5.1). An animation of the
particle orientations provides a descriptive understanding of the ensem-

5.4 visual analysis system 115

Figure 5.3: ASEVis is a tool supporting the visual analysis of active systems and
allows interactively defining characteristic measures.

ble run and how the particles move, see Figure 5.4a for a static image
taken from the animation. However, long animations or many anima-
tions are cognitively demanding compared to static visualizations [123].
Therefore, we also include a static visualization of single components
of the particle orientation vector over time. In a line plot with time on
the horizontal axis, we visualize either the x-, y- or z-component of the
particle direction vector where we color-code the individual particles.
Our system with seven particles results in seven lines, as shown in Fig-
ure 5.4b. As we leave out two components of each orientation vector, this
visualization does not include the whole data but allows for identifying
important features in the data more easily than the animation. We use a
scatterplot matrix (SPLOM) to include all multi-dimensional particle vec-
tor components. However, the 21 dimensions of the dataset lead to a
relatively high dimensionality which requires a lot of screen space and
is hard to interpret. Therefore, we first perform a principle component
analysis (PCA) [177], which allows for extracting the most important fea-
tures and neglecting dimensions that do not contribute. This leads to a
visualization as shown in Figure 5.4c. Here, we select the principal com-
ponents that cover 99.9% of the variation. To limit the dimensionality in
case of many dimensions necessary, the user can optionally set an upper
limit of dimensions to include. The result of the PCA is then visualized
in the SPLOM. Besides including all components in the analysis, this vi-

116 interactive definition of characteristic measures

(a) Animation
(b) Lineplot

(c) SPLOM

Figure 5.4: Three different detail visualizations allow for investigating single en-
semble members. The line plot for d = 2.436 and β = −4.5 reveals
that until 700R/B1, the particles change their orientation almost pe-
riodically, while for larger times, it is completely aperiodic.

sualization allows us to identify the intrinsic dimensionality of the data,
which might be helpful for a potential measure definition.

5.4.2 Interactive Programming Interface

We include interactive programming interfaces for defining measures to
aggregate data per time step and over time (T5.2, T5.4). This interface
allows users to directly define suitable measures during the analysis
process. Integration directly into the analysis tool also facilitates the ex-
plorative analysis based on the definition of the aggregation measure
as well as iterative refinement. As Python is the most common program-
ming language in the application domain, we also use it for our interface.
Additionally, it allows for using a wide range of standard libraries like
numpy and scipy.

For defining the measures, the users implement a function with a spe-
cific signature provided in a function template as a starting point. As
both measures serve the very specific purpose of reducing the dimen-
sionality of a multi-dimensional vector to a scalar for each time step and
the time series to a single scalar, the need to follow the signature does
not impose a restriction. Additionally, it is possible to use the aggrega-
tion measure per time step for defining the measure aggregating over
time which facilitates the development. Users can name each measure
which is then used to label the corresponding visualizations.

5.4 visual analysis system 117

Figure 5.5: The timeplot shows the variation of the aggregation for every single
timestep over time. The lines can be color-coded according to the input
parameters to study their influence.

5.4.3 Timeplot

A line plot that shows the user-defined measure over time is included
to visually compare the different ensemble members over time (R5.3) as
shown in Figure 5.5. We refer to this plot as a timeplot to differentiate it
from the detail visualizations. The measure is evaluated for each time
step individually. To differentiate the different ensemble members, the
users can select among a color coding highlighting only the different
runs or encoding the parameter values by color. This allows understand-
ing of how different input parameters influence the variation over time.
The color coding can be changed interactively to better understand the
parameter values.

5.4.4 Heatmap

A heatmap allows for visualizing the aggregations over time for each
ensemble member. For the axes, we choose the two parameters. The
heatmap resembles a state diagram which is a typical representation in
studying the occurrence of different states based on the parameter val-
ues. We use the viridis [350] color map, which is perceptually uniform.
For irregularly sampled parameter spaces, the segments for the sample
points are extended along the axes to cover the whole parameter space
and allow for an easier interpreation compared to showing only points.
This might lead to segments of the heatmap where the sample point is

118 interactive definition of characteristic measures

b
e
ta

d

delta(t)

d=2.436, beta=-4.5

Figure 5.6: A heatmap visualization shows the aggregation over time for each
ensemble member depending on the parameter values. When hover-
ing over fields, a histogram shows the distribution of the values per
timestep. Ensemble members can be selected interactively for investi-
gation in linked visualizations.

not placed in the center. To clearly show the sampling of the parameter
space, the location of each sample is marked by a black point.

The users can interactively select ensemble members by brushing in
the heatmap. Selected regions are visualized by changing the color of
the sample point to red which is chosen as it does not interfere with
the colormap used for the heatmap. Additionally, the saturation of uns-
elected cells is decreased to 0.5. As the visualizations are closely linked,
a set of selected ensemble members can be directly shown in the time-
plot. It is also possible to select individual ensemble members, which are
visualized in the detail visualization.

To validate the choice of the aggregation measure over time, we also
show the distribution of the aggregation measure per time step. This
distribution is shown in a histogram when hovering over a cell on the
heatmap. It also provides additional information in the analysis stage
that goes beyond the aggregation to single scalar values but does not
include the complexity when visualizing the data over time.

5.5 analyzing active crystal dynamics

In this application use case, we will describe how our tool was used for
defining an order parameter in a study of the properties of active crys-
tals [101]. One of the project’s main goals was to define an order param-
eter that differentiates between different temporal states. Then, it should
be studied for which of the parameter values d, which describes the dis-
tance between the particles, and β, which characterizes the propulsion

5.5 analyzing active crystal dynamics 119

Time

x
-C
o
o
rd
in
a
te

(a) Line plot for periodic case (b) SPLOM for periodic case

Time

x
-C
o
o
rd
in
a
te

(c) Line Plot for aperiodic case (d) SPLOM for aperiodic case

Figure 5.7: Detail visualizations allow for investigating single ensemble members.
We can differentiate between periodic behavior (top row, β = −2.7
and d = 2.3R) and aperiodic behavior (bottom row, β = 0.0,d =
2.3R).

mechanism, these different states occur. Especially boundaries in param-
eter space and transitions between the different states are interesting. For
the analysis, we used a dataset that describe the system that we also an-
alyzed in Section 4.8.3 but only consider the orientations of the particles.
The dataset consists of 30 runs. Each simulation run covers a time of
1000R/B1 (dimensionless time units), which results in 465 to 6664 time
steps.

We follow the analysis workflow presented in Section 5.3. At first, we
analyze individual ensemble members. In Figure 5.7, we spot very differ-
ent behavior between periodic states (top) and aperiodic states (bottom).
A first investigation revealed a transition phase which is why, in the
following, we only consider the simulation results starting at 300R/B1.
While the line plot shows the difference between the ensemble mem-
bers, it only visualizes one of the orientation vector components. Ob-
serving the behavior in a SPLOM reveals that the ensemble member
with β = −2.7 and d = 2.3R indeed shows periodic behavior and only
the first four principal components are needed for covering 99.9% of the
variation in the data. In contrast, the run with parameter values β = 0.0
and d = 2.3R does not show any periodicity in the line plot shown in Fig-
ure 5.7c. Additionally, the PCA reveals that we would need the first 20
components to cover 99.9% of the variation. To avoid too many scatter-
plots for the available screen space, we limit the number of components
included in the SPLOM to 8, as shown in Figure 5.7d. Also, in this visu-

120 interactive definition of characteristic measures

alization, we cannot identify any periodicity. Therefore, we aim to define
a measure for differentiating periodic and non-periodic behavior.

Based on insights obtained from studying individual ensemble mem-
bers, we defined a suitable measure interactively. At first, we experi-
mented with the distance to the first timestep. While this measure would
become 0 regularly for periodic behavior and, thus, the resulting one-
dimensional time series covers the periodicity, it does not yield mean-
ingful results for aperiodic cases. Additionally, it does not directly sup-
port the identification of the end of the transition phase and strongly
depends on the choice of the first time step. After several iterative re-
finement steps, we identified a measure that satisfies our requirements.
Here, we use the closest Euclidean distance to a previous position where
the multi-dimensional trajectory returns to. This can be described as

δ(t) = min
(

min
0<r<m1

∥u(t) −u(r)∥ ,

min
m2<r<tmax

∥u(t) −u(r)∥
)

,

where u(t) describes the 21-dimensional feature vector at time t, m1

is the closest local maximum of the function f(r) = ∥u(t) −u(r)∥ with
m1 < t and m2 is the closest local maximum of f(t) with m2 > t [101].
The timeplot shown in Figure 5.5 reveals a clear separation between the
different behaviors. For periodic and static cases, the measure δ(t) de-
creases to 0 while δ(t) > 0 holds for all values of t if the ensemble
member is aperiodic. Additionally, this behavior allows for clearly defin-
ing the end of the transition phase by observing when it decreases to 0

for periodic runs.
To aggregate the data over time and obtain a single scalar value char-

acterizing the ensemble member (R5.3) we use the mean value of the
selected time interval. This aggregation results in a heatmap as shown
in Figure 5.6 where we can observe different regions. Observing the re-
sults shows that periodic behavior occurs for small values of d, and the
defined measure increases continuously in the direction of d. Observing
the changes in the direction of β, we can find discontinuities indicating
a different kind of transition between the corresponding states.

For a deeper analysis of the discontinuous transition, we select a set of
simulation runs with d = 2.436 and different values for β. The selected
simulation runs are shown in the timeplot in Figure 5.5. Using the value
of β as a color coding, we can observe that the ensemble members with
β = −2.3 and β = −3.4 show values of δ(t) that are close to zero while
the values for the other members are higher. The only exception is the
temporal evolution of β = −4.5 which shows small values until t =

700R/B1 and, at this point, suddenly jumps to higher values.

5.6 discussion 121

To understand this phenomenon, we can select this ensemble mem-
ber and investigate its behavior in the animation as well as the other
detail visualizations. The line plot of the x-components of the particles’
direction vectors is shown in Figure 5.4b. This visualization, as well as
the animation, reveals that initially, the motion seems almost periodic.
At later timescales, however, the motion appears chaotic where we can
identify the transition around t = 700R/B1, which agrees with the steep
increase in the timeplot.

5.6 discussion

The visual analytics approach presented in this chapter supports the
interactive definition of characteristic measures in the domain of active
matter physics. Based on a requirement analysis, we defined a set of
abstract tasks. These tasks were addressed in a visual analysis tool1 that
supports the analysis of complex active systems. Our approach is helpful
in the physics domain because the order parameter defined with the help
of this approach led to a physics article [101].

Our approach generally scales well to larger systems as it builds on a
user-defined dimensionality reduction. If the number of particles grows
significantly, it might be necessary to adapt the detail visualizations to
avoid overplotting. Additionally, we only considered two-dimensional
parameter spaces in this chapter as this was sufficient for the presented
application use case. However, exchanging the heatmap for a suitable
multi-dimensional visualization does directly allow for applying this
approach to higher-dimensional parameter spaces. One possible multi-
dimensional parameter-space visualization here would be the hyper-
slicer as presented in Chapter 4.5.1.

While the findings generated by this approach resulted in a domain-
specific article and, thus, the tool also proved helpful in practice, its
broader applicability needs to be investigated in more detail. In general,
the approach presented in this chapter can be easily generalized to other
domains in which simulation ensembles, where a multi-dimensional fea-
ture vector can describe each ensemble member, are analyzed. Only
the detail visualizations are domain-specific and need to be exchanged,
while all other visualizations could be applied directly. Future research
might include the generalization and easy applicability to other data
types, requiring a flexible approach for the detail visualizations. Similar
measures are also needed for spatial datasets. An interesting research
direction would be to study the application of this approach to feature

1 https://github.com/marinaevers/asevis

https://github.com/marinaevers/asevis

122 interactive definition of characteristic measures

vectors derived by spatial simulation ensembles and how to include the
selection of suitable feature vectors directly in the analysis workflow.
One possibility to use spatial data directly is using the feature vectors
created by Monte Carlo sampling as introduced for the multi-run simi-
larity plot (see Section 2.3.2).

Additionally, the adaption by domain experts would be significantly
improved by providing more options to create paper-ready figures. In
this chapter, we only studied simulation ensembles that can be defined
by a multi-dimensional feature vector for each ensemble member. Also,
the workflow for defining characteristic measures as presented in this
approach could be combined with the analysis of parameter-space par-
titionings as presented in Chapter 4 where a feature-specific parame-
ter space partitioning could be computed from the aggregated data ob-
tained by the user-defined dimensionality reduction.

6
T O P O L O G I C A L A N A LY S I S O F PA R A M E T E R
D E P E N D E N C I E S

The topological structure of scalar fields in any dimension is commonly
used to analyze intrinsic features of the data. The fields’ topology is a
powerful descriptor of the scalar field because the topological structure
is invariant under continuous deformations. Therefore, topological data
analysis has been increasingly applied to study ensemble data in recent
years. One application is understanding the input parameter’s influence
on the data’s topological structure. Therefore, it is interesting to study
the topological variations in dependence on the parameter value.

Common topological descriptors for scalar fields are the merge and
the split tree. They can be combined into a contour tree which encodes
the topology depending on the isovalue. However, since visualizations of
the contour tree as vertical tree visualizations or node-link diagrams in
the spatial domain are non-intuitive to non-experts, Weber et al. [367]
proposed the visual metaphor of topological landscapes. Topological
landscapes are 2D scalar fields described by the same contour tree as
the multi-dimensional scalar field. Thus, they can be used as 2D repre-
sentation of the scalar field’s topology.

However, if topological landscapes should be used to study topology
variations depending on simulation parameters, the topological land-
scapes are not coherent, hindering interpretability. Therefore, we pro-
pose a concept for creating coherent topological landscapes based on
finding mappings of topological features in merge and split trees that
can be combined to contour trees. The resulting coherent contour trees
over a selected input parameter can be visualized as animations of co-
herent topological landscapes or 3D volume visualizations of stacked
topological landscapes. This chapter is based on an extended version of
a paper by Herick et al. [154] that describes temporally coherent topo-
logical landscapes. As time can be interpreted as a particular case of a
parameter, the original approach is included in the work presented in

123

124 topological analysis of parameter dependencies

this chapter. Therefore, for the remainder of this chapter, the temporal
variation is included when discussing variations over a parameter.

In the following, we will summarize related work in topological en-
semble analysis and discuss the necessary background for this chapter
in Section 6.1. After providing an overview of our approach (see Sec-
tion 6.2), we present our method for computing coherent contour trees
in Section 6.3. The visualization of coherent topological landscapes is
presented in Section 6.4 followed by different application use cases in
Section 6.5.

The results presented in this chapter are based on the following paper:

M. Evers, M. Herick, V. Molchanov and L. Linsen, Coherent
Topological Landscapes for Simulation Ensembles, In Com-
puter Vision, Imaging and Computer Graphics Theory and Appli-
cations, edited by Bouatouch K. et al., 223-237 (2022)

Maria Herick developed and implemented the method for coherent
topological landscapes and applied it to temporal data as described in
the conference paper [154]. All authors discussed the methods of the
extended paper and contributed to writing and editing the manuscript
of the paper. I implemented the generalization to simulation ensembles
and created the results.

6.1 related work and background

Different topological descriptors for scalar fields have been proposed,
for example, the analysis of persistent homology that can be shown as
persistence diagrams or barcode visualizations [89]. The Morse-Smale
complex partitions the domain so that each domain is equivalent in gra-
dient behavior. [132, 131].

A level set Lz [90] for a value z ∈ R for a fixed parameter value pi is
defined as

Lz(f) = {x|f(x,pi) = z) ,

where f(x,pi) is a Morse function. In the case of 2D data, a simply con-
nected component of Lz is called an isoline, and in 3D data, it is called
an isocontour. A Reeb graph [282] can then describe the evolution of the
level sets when varying the isovalue z. If the function f is defined on a
simply connected domain, the general Reeb graph simplifies to a con-
tour tree [351, 56, 83]. The contour tree nodes represent the function’s
critical points f. The leaves of the tree describe the emergence of new
isocontours (minima) or the vanishing of a contour (maxima). The inter-
nal nodes represent saddle points at which isocontours merge or split.

https://doi.org/10.1007/978-3-030-94893-1_10
https://doi.org/10.1007/978-3-030-94893-1_10

6.1 related work and background 125

10

(a) Data. (b) Contour tree.

(c) Merge tree. (d) Split tree.

Figure 6.1: The scalar field (a) is shown as a height field together with its critical
points (black: minima, violet: saddle points with merge, red: saddle
points with split, white: maxima). The contour tree (b) is constructed
by combining the merge tree (c) and the split tree (d). All trees are visu-
alized with the nodes located on their positions in the spatial domain
and the corresponding scalar field shown as desaturated surfaces.

Based on these two options, the saddle points can be classified as merge
or split nodes. An edge of the contour tree represents the lifespan of the
topological feature corresponding to the nodes that the edge connects.
Thus, each point on the edges of the contour tree represents one isocon-
tour, and each cut through the contour tree at a certain height represents
a level set.

An efficient computation for contour trees has been proposed by Carr
et al. [56]. As intermediate steps, a merge tree and a split tree are cre-
ated. The merge tree, also called join tree, contains all minima, all merge
nodes, and the global maximum. The split tree is formed by the maxima,
the split nodes, and the global minimum. Both split and merge trees are
rooted trees. Merge and split trees can then be combined to obtain the
contour tree, which is an unrooted tree. An example of the topological
structure of a simple dataset is shown in Figure 6.1. Here, we explicitly
show the dataset together with the critical points as well as the split
tree, the merge tree, and the resulting contour tree. Many options for
the computation of topological features are included in the Topology

126 topological analysis of parameter dependencies

ToolKit (TTK) [340, 339, 36], which we also used for the computation
and simplification of split and merge trees.

Contour trees can be visualized directly using a 2D graph drawing
algorithm to show them as a node-link diagram. The vertical axis can
show the corresponding scalar values [56]. Alternatively, if the domain
of the scalar field is 2D or 3D, the nodes can be shown directly in the
spatial domain as shown in Figure 6.1. Pascucci et al. [255] proposed
using a 3D radial graph drawing algorithm which has been extended
to a visualization called “topological cacti” [368]. However, analyzing
the topological structure of the data in node-link diagrams requires a
significant amount of background knowledge in creating contour trees.
Therefore, Weber et al. [367] proposed topological landscapes as a terrain
metaphor that encodes the contour tree.

6.1.1 Topological Landscapes

Topological landscapes [367] can be used to create a 2D heightfield that
contains the same contour tree as the original data, which can be of arbi-
trary dimension. As the landscape is described by the same contour tree
as the original data, it contains the same topological information, but
it is easier to interpret as a direct tree visualization of the contour tree.
When constructing a topological landscape, the position of the individ-
ual peaks and their areas are not determined. Therefore, these attributes
can be used for encoding additional information, like the volume of the
topological features.

The computation of topological landscapes is based on computing the
so-called branch decomposition, an acyclic graph consisting of monot-
onous paths of the contour tree. Thus, the nodes along a path need to
increase or decrease monotonously. The graph created by a branch de-
composition can be seen as a hierarchical graph where a branch b is
a child of another branch b̂ if one of b’s endpoints is one of b̂’s inner
nodes.

This hierarchical structure can be used to iteratively construct the topo-
logical landscape as shown schematically in Figure 6.2. The root branch
(gray in Figure 6.2) corresponds to the entire domain of the landscape,
which is stored as a triangulation. The root branch’s minimum (black)
is assigned to the boundary vertices, while the maximum (white) is as-
signed to the central vertex. Before the children can be added, the trian-
gulation has to be refined to create enough space. Then, the extremum
corresponding to each child branch is added to the corresponding center,
while the value associated with the saddle is assigned to the surround-
ing vertices. Thus, we obtain the same configuration for the child branch

6.1 related work and background 127

Figure 6.2: The topological landscape of the left contour tree can be constructed
by refining the grid to add the child branches (red, green, and violet).
The height of the nodes is encoded as shades of blue.

as we created for the root branch. This method allows for recursively
constructing the landscape until all values are included.

Over the last years, extensions to the metaphor of topological land-
scapes have been proposed. The visualization of topological landscapes
can be enriched by visualizing geometrical properties of the features [30].
Volume-preserving topological landscapes, as proposed by Harvey and
Wang [139], can also be constructed for higher-dimensional scalar fields.
Besides using topological landscapes for the analysis of scalar fields, this
metaphor was also extended to other types of data like point clouds [250,
251, 252], general graphs [397] and dendrograms [207]. Demir et al. [76]
proposed a hierarchical rendering for topological data of datasets with
complex, deep hierarchies.

Contour trees have also been used to study uncertain data [196, 129,
383, 388], but none of the approaches allows for tracking changes over
varying parameters or time. However, topological structures have been
used for several years to track features over time. Edelsbrunner et al. [91]
provide a theoretical algorithm to compute time-varying Reeb graphs.
Such methods can be used for studying the temporal evolution of se-
lected features [50, 366]. While Köpp and Weinkauf [194] use merge
trees for temporally coherent layouts, they show a linearization of the
volume data instead of the temporal evolution of the topological fea-
tures. Bajaj et al. [22] propose a method to study single contour trees
at different time steps, and they also discuss that time can be replaced
by a parameter. This approach has been extended to higher dimensions
and other topological properties [189]. However, they only allow interac-

128 topological analysis of parameter dependencies

tively switching between timesteps without aiming for coherence. Sohn
and Bajaj [319] use contour trees to visualize changes of isosurfaces over
time but only work on selected isovalues. Another approach [330] deal-
ing with contour changes over time works on cumulative effects of the
split and merge events but does not take all events into account. Other
approaches work purely on merge trees, for example, by comparing their
subtrees [293] or computing their temporal evolution [252], but they do
not include the additional information contained in split trees. None of
these approaches visualize the temporal evolution of contour trees or
the variation of contour trees over a parameter.

Closest to our work are the time-varying fuzzy contour trees [216,
215] which provide a contour tree alignment. This approach explicitly
tracks the changes over time but visualizes the contour trees directly.
Additionally, the authors do not propose a static overview visualization.

6.1.2 Merge Tree Matching

Existing approaches [216, 215, 252, 271, 194, 271, 272, 371, 372] also use
mappings between either merge trees or contour trees.

Oesterling et al. [252] propose constructing time-varying merge trees
by tracking the changes between two consecutive time steps based on
linear interpolation. While their approach also allows for applying the
procedure on split trees, their visualizations would need to be adapted
to contain the entire topological information in the contour tree.

Also, other options for aligning contour trees exist and, thus, allow
for tracking. A common way of computing distances between trees is
the tree edit distance [35, 120] which can be minimized to obtain a map-
ping between two trees. This procedure has also been applied to merge
trees [322, 293, 31]. The edit distance can be computed between two la-
beled trees by measuring the minimum number of operations for trans-
forming the trees from one to another. Possible operations are inserting,
deleting, or relabeling nodes, and each operation gets assigned a cost
where the overall cost value is minimized. For computing the distance,
it is necessary to specify the cost function where a cost function of merge
trees can include the specifics of topological features [322].

The tree alignment distance, as used for contour tree matching by Loh-
fink et al. [215], is a variant of the tree edit distance that can be applied
to unrooted trees like contour trees. The basic idea involves creating
a super-tree that contains all trees that should be aligned as a sub-tree.
This idea relates to our meta tree, which also contains all individual trees.
However, as the matching algorithms differ, the structures of the meta
tree and the super-tree also differ. For example, in contrast to Lohfink et

6.2 overview 129

...

...

..

..

Scalar fields Merge trees

Split trees

Coherent meta
merge tree

Coherent meta
split tree

Meta
contour tree

Coherent
topological
landscapes

Visualization

Figure 6.3: Our approach for computing and visualizing coherent topological
landscapes is based on matching split and merge trees.

al., we allow matchings to violate the tree property which is stored in
the meta tree as duplicated nodes with links (see Section 6.3.2 for more
details).

6.2 overview

Our approach for visualizing coherent topological landscapes consists
of several steps shown in Figure 6.3. In the remainder of this chapter,
we will assume that just one parameter is varied. A generalization to
multi-dimensional parameter spaces, as we considered in the previous
chapters, is briefly discussed in Section 6.6 as future work.

At first, the merge and split tree are computed for each scalar field
individually, leading to one merge and one split tree for each discrete
sample of the parameter range. For computing the merge and split trees,
the implementation provided by TTK is used. TTK can also be used to
simplify the trees, which is optional for our approach. However, espe-
cially for real-world data, this step is recommended to prevent the trees

130 topological analysis of parameter dependencies

from becoming complicated by noise in the data. The merge and split
trees are matched iteratively using the distance metric presented in Sec-
tion 6.3.1. The trees are stored in a meta data structure where we obtain
a meta split tree Ts and a meta merge tree Tm that store the split and
merge trees for all parameter values (see Section 6.3.2 for more details).
The meta trees can then be used to compute a parameter-varying con-
tour tree.

This data structure is used to compute coherent topological landscapes
based on coherent contour trees. Finally, we propose two options to vi-
sualize the variation of the topological landscapes over the parameter
visualization as discussed in detail in Section 6.4. An animation of the
topological landscapes is especially intuitive to show changes over time
but imposes a high cognitive load. Therefore, we encode the topological
landscapes as 2D scalar fields, which we stack ordered by the parame-
ter value. The resulting 3D volume can be visualized using any volume
visualization technique where we use direct volume rendering.

6.3 coherent contour trees

For computing coherent contour trees, we match the merge and split
trees as they are trees with a dedicated root node. This facilitates the
matching in comparison to directly matching contour trees. To compute
a meaningful matching, we assume a relatively high similarity between
the trees that should be matched. Otherwise, a meaningful computation
of matchings is not possible. However, as we aim at studying the param-
eter dependency of ensembles where we assume numerical parameters
or, as an alternative, the temporal evolution of ensembles, we can as-
sume that variations from one parameter setting to the next (or from
one timestep to the following timestep) are sufficiently small.

6.3.1 Distance Metric

For matching the split and merge trees, a distance measure between the
nodes of two trees is defined. For the distance measure, we differentiate
between the leaves of the tree and the inner nodes because they represent
different topological structures. As the root nodes of both trees represent
the whole domain, they match by definition.

6.3.1.1 Leaf nodes

Leaf nodes correspond to isolated critical points because they represent
either minima (for merge trees) or maxima (for split trees). A critical

6.3 coherent contour trees 131

point i in the scalar field is defined by its spatial position xi and its func-
tion value f(xi,pi) where pi denotes the parameter value which can also
be replaced by the time. These two values should also be considered for
the distance computation. Therefore, we define the distance between two
leaves δL(i, j) as the weighted average of the distances δL1

(i, j), which
considers the spatial distance between the points and δL2

(i, j) which con-
siders the difference in the function values. The distances are defined as

δL1
(i, j) =

∥∥xi − xj
∥∥

and

δL2
(i, j) = |f(xi,pi) − f(xj,pj)| .

Before computing the weighted sum, both terms are normalized. The
user can adapt the weights to define the influence of the two components.
As a default, we weight δL1

(i, j) and δL2
(i, j) equally.

6.3.1.2 Inner nodes

For matching inner nodes, we take into account the corresponding spa-
tial region, the position of the corresponding critical points, and the
matches of the subtrees. Each merge or split node is surrounded by a
region Ri that forms a connected component. In the case of merge trees,
this region is formed by all spatial samples xi for which f(xi) ⩽ f(xj)

where xj is the spatial sample belonging to the parent node. For split
trees, the samples that fulfill f(xi) ⩾ f(xj) belong to the region Ri. For
computing the distance between the regions of nodes i and j, we define
a one-sided distance as

δ ′(i, j) =

∑
x∈Ri\Rj

minq∈Rj
∥x−q∥

|Ri|
,

where |Ri| describes the cardinality of the set of sample points. This
computation can be accelerated by considering only the margins of the
connected components. A two-sided distance can then be defined by
weighting the one-sided distances with the region’s cardinality leading
to

δI1(i, j) =
δ ′(i, j) · |Ri|+ δ ′(j, i) · |Rj|

|Ri ∪ Rj|
.

For the similarity of the matching between the leaves of subtrees, we
consider two subtrees Si with root node i and Sj with root node j. The

132 topological analysis of parameter dependencies

distance is computed as the average distance of all leaf pairs and can be
written as

δI2(i, j) =

∑
si∈SL

i ,sj∈SL
j
δL(si, sj)

|Si| · |Sj|
,

where SLi and SLj are the leaves of the subtrees Si and Sj, respectively.
Assuming that the nodes i and j match, we can compute the percentage
of matches δI3(i, j) of the leaf nodes of Si and Sj. Finally, we consider
the distance between the spatial positions δI4 =

∥∥xi − xj
∥∥ which is de-

fined analogeous to leaf nodes. Using δI1(i, j) to δI4(i, j), we define the
distance for the inner nodes as the weighted sum.

As a default, we use equal weights for all components of the weighted
sums.

6.3.2 Matching

For tracking the topology changes over a parameter, we create a data
structure that stores the evolution of a merge tree or a split tree and
refer to it as the meta tree. Note that the meta tree is not necessarily a
tree, but the tree property can be restored, as discussed later. To cover
the entire set of changes, we compute two meta trees, Ts and Tm, for
the split and merge trees, respectively. These data structures can then be
combined into a contour tree. The meta trees store the function values
of the critical points, and their lifespans to enable precise tracking over
time or parameter value.

We will first describe how to create a meta tree T from two merge or
split trees T1 and T2. Additional trees can then be inserted iteratively.
Generally, two nodes a1 ∈ T1 and a2 ∈ T2 are combined into a single
node a ∈ T if matched because the corresponding feature exists in both
trees. This will also be reflected in the lifespan of this feature. If a node
b1 ∈ T1 or b2 ∈ T2 has no matching node in the other tree, it corre-
sponds to an emerging or disappearing feature. In this case, the nodes
should also be included in the meta tree T , but the lifespan reflects the
emergence or disappearance.

For creating the meta trees, we make use of the fact that merge and
split trees are rooted trees, and the roots match by definition. Therefore,
we start traversing the trees by matching the root nodes of T1 and T2.
Then, we match the trees by applying a greedy algorithm when proceed-
ing through the depth levels in a top-down procedure. For identifying
matching nodes, we use the distance metrics presented in Section 6.3.1.
However, in addition to searching the current depth level for a node in
T1 that matches a node in T2, we also search the subsequent depth level.

6.3 coherent contour trees 133

1

2

3 4

1
2

3

Without next
depth level

32

1

32

1 4

32

1 4

Figure 6.4: Isocontour 4, that emerges for the red level set, requires to match the
trees T1 and T2 over the next depth level. The gray dashed lines indi-
cate the matching without considering the different depth levels.

This procedure is also applied to search in T1 for matches of the nodes
in T2. In this work, we only consider a difference of one depth level to re-
duce the computational cost because we assume the contour trees to be
sufficiently similar. In Figure 6.4, we show an example that illustrates the
necessity of this step. Here, a new isocontour with the label 4 emerges.
This adds an additional depth level in T2 compared to T1. Without al-
lowing for different depth levels, one might obtain a matching shown by
the gray dashed lines. However, when allowing for a shift of one depth
level, one obtains a meta tree as visualized in black.

Additionally, the hierarchical order of the critical points might change,
as depicted in the example in Figure 6.5. Here, isocontour 1 is the parent
of the isocontours 2 and 3 in the blue tree, but the parent of isocontours
3 and 4 in the red tree. Thus, to accurately match the trees, the node
corresponding to isocontour 3 needs two parents in the meta tree T . Even
though such a construction violates the tree property of T , we allow for
it and describe how to restore the tree property for the contour tree
creation later.

As we aim to investigate the variation of the topological structure over
a driving parameter, this parameter induces an ordering of the different
trees. Thus, we can iteratively add all trees following the order induced
by the parameter pi. Thus, the next tree T3 is matched and added to

134 topological analysis of parameter dependencies

43

2 1

432

32

1 4

432 3

1 2

3

4

1

2
3

4

Figure 6.5: Changing the hierarchical order requires storing two parents to allow
for matching the nodes corresponding to isocontour 3.

the meta tree T . To ensure the coherence, assume that T2 is closer to
T3 than T1 is. Therefore, we neglect the edges of T1 that destroy the tree
property and do not belong to T2. In the end, the meta tree T will contain
all the nodes and edges of all steps and, thus, the complete topological
information.

This meta tree creation algorithm can be applied to the merge tree
leading to a meta tree Tm as well as to the split tree for creating a meta
tree Ts. The tree structure needs to be recreated to combine these data
structures into coherent contour trees by following the algorithm pro-
posed by Carr et al. [56]. The tree property is restored by duplicating
the tree subtrees with more than one parent. To still keep the informa-
tion that these subtrees are duplicates, they are linked to each other.
Following the construction of the meta tree, at most, one of the subtrees
is relevant for a given parameter setting (or timestep). Having restored
the tree property, the contour tree can be created from the merge and
split trees by directly applying the standard algorithm. For the coherent
contour tree, all nodes and edges of all individual trees are stored. Ad-
ditionally, we store the life spans of the features and the links between
duplicates.

6.4 coherent visualization of topological landscapes

The meta contour tree described in Section 6.3.2 contains contour trees
for each ensemble member. By extracting this contour tree, the topolog-
ical landscape can be computed using the original algorithm presented

6.4 coherent visualization of topological landscapes 135

Figure 6.6: We directly render the topological landscape and create an animation
over the parameter values. The different peaks are color-coded.

by Weber et al. [367]. As the landscapes are created in the same order,
based on the coherent contour trees, the order of constructing the dif-
ferent topological features in the landscapes does not change. Therefore,
the coherent contour trees directly lead to coherency in the computation
of topological landscapes.

6.4.1 Animation

We propose two approaches for visualizing the topological landscapes
in dependency on the parameter values. One possibility is using an ani-
mation to show the variation over the input parameter. This is especially
intuitive if the variation over time instead of over parameter values is
studied, as in this case, time is directly represented as time.

For creating the animation, each parameter value is mapped to cor-
responding time steps. For each parameter value, the topological land-
scape is visualized as a height field which can be directly constructed
from the 2D scalar field. The visualization of such a time step is shown
in Figure 6.6. We apply linear interpolation between the two height fields
for smooth transitions between the topological landscapes for different
parameter values. This also allows for smooth animations in case of vary-
ing step sizes between the parameter values in irregularly sampled pa-
rameter spaces. To visualize matching features, we apply a consistent
color coding where each mountain in the landscape gets assigned a
color.

However, switching between the duplicates introduced to provide tem-
poral coherency might induce discontinuities in the visualization. These
discontinuities represent changes in the topology encoded as switches

136 topological analysis of parameter dependencies

Figure 6.7: The topological landscapes can be converted to scalar fields, which can
be stacked in order of the driving parameter. The resulting volume can
be visualized as a direct volume rendering.

between duplicates. Therefore, they encode features of interest that should
be visually pertained.

6.4.2 Static Visualization

While animations provide an intuitive visualization of the evolution,
they might impose a high cognitive load if the users want to obtain a
more global overview. Therefore, we propose a static visualization as
an alternative. For the static visualization, each topological landscape is
transformed into a 2D texture that contains the nodes’ IDs. We explicitly
encode the nodes’ IDs instead of using the 2D height field to reduce the
variation and avoid missing smaller features.

The resulting textures can be stacked on each other, ordered by the pa-
rameter value. Again, linear interpolation provides smooth transitions
and accounts for different step sizes. Thus, we obtain a 3D volume rep-
resenting the variation of the topological structure over the change of
the parameter.

This volume can be visualized using standard volume visualization
techniques like direct volume rendering, as shown in Figure 6.7. Design-
ing a suitable transfer function allows for assigning unique colors to all
nodes. For the remainder of this chapter, we use a categorical transfer
function as also proposed by Weber et al. [367]. The transfer function
can be adapted interactively to highlight special features or , for exam-
ple, accentuate peaks whose height lies in a particular range.

6.5 results 137

p

x
y

Figure 6.8: The stacked landscapes for the synthetic dataset are shown for the
variation over driving parameter p. The green peak persists while the
blue peak emerges, vanishes, and then replaces the orange peak.

6.5 results

In the following, we will present applications of coherent topological
landscapes for analyzing different datasets. After verifying our approach
with synthetic data, we apply it to a 2D reaction-diffusion dataset. Fi-
nally, we apply the approach to a 3D simulation ensemble to study cavity
flow.

6.5.1 Synthetic Datasets

We create a synthetic parameter-dependent 2D dataset to validate our ap-
proach. The dataset depends on a parameter p and contains 20 runs with
a spatial resolution of 30× 30. For each parameter setting, the dataset
contains 2 peaks. A third one emerges with an increase of p and over-
laps with one of the other peaks.

When computing the coherent topological landscapes, we simplify the
contour trees by only keeping features with a persistence larger than
6% of the function value range. This reduces noise caused by creating
the Morse function. The results for the synthetic dataset are shown in
Figure 6.8. Observing the volume rendering of the stacked topological
landscapes over the parameter variation provides an overview of the
topological changes associated with parameter changes. The green peak
persists for all parameter values. As the orange peak is also present
for small values of p, it becomes clear that it corresponds to the other

138 topological analysis of parameter dependencies

(a) p = 0. (b) p = 9.

(c) p = 14. (d) p = 19.

Figure 6.9: When observing the animation of the topological landscapes, the evo-
lution over the parameter can be observed. For each of the shown pa-
rameter values, the original data is shown on the left, where the peaks
are surrounded by colored boxes whose colors match those used in
the topological landscapes.

peak present from the beginning. The blue peak emerges over time as
a separate peak and vanishes again. At some point, the orange peak
vanishes, and at the same time, the blue peak emerges again.

To better understand this behavior, we investigate the animated ren-
dering of the topological timesteps and compare it with the original
data. The landscape and the underlying data for p = 0 are shown in
Figure 6.9a, where the features in the data are linked to the features in
the topological landscape by colored boxes. As expected, the two peaks
in the data are visible as two peaks in the landscape. When increasing
p, the third peak (color-coded in blue) emerges as shown for p = 9 in
Figure 6.9b. When further increasing p, the blue peak merges with the
orange peak as presented in Figure 6.9c, causing the blue mountain to
vanish. Finally, for very large parameter values, the third peak domi-
nates. This leads to the switch in topological features, encoded in the
rendering of the stacked landscapes as a vanishing of the orange feature
and the emergence of the blue feature.

Note that a switch in the topology is visually encoded as a sudden
switch in the landscapes. Thus, the topological change is clearly visible.

6.5 results 139

6.5.2 Pattern Formation in 2D

Next, we apply our approach to studying self-organization in pattern
formation. One group of systems that shows pattern formation is the so-
called reaction-diffusion systems. While this mathematical model can be
applied in various domains, for example, in biology, the most prominent
examples are applications in chemistry. Chemical reactions transform
the different components in the equation into each other, while diffu-
sion allows for spatial spreading. This chapter investigates a reaction-
diffusion system described by a two-layer brusselator model [390]. For
example, this kind of model could be used to describe the behavior of
two thin layers of gel that meet at an interface. The equations used for the
simulation are provided in Appendix B.2. While the equations depend
on 4 parameters, we only consider the variation of parameter b between
7.5 and 9.0 using adaptive steps between 0.01 and 0.1. This leads to 25

time-varying runs with a resolution of 32× 32.
As we aim to investigate the relationship between the emerging pat-

terns and the driving parameter b, we only use the last time step, where
the pattern is fully formed. For the computation, we only consider fea-
tures with a persistence larger than 15% of the whole value range to
exclude noise and focus on the most relevant features.

The results for this dataset are shown in Figure 6.10. The stacking of
the topological landscapes shows little variation over a large range of
parameter values. However, for larger values of b, additional features
appear. When comparing the topological landscapes with the original
data as shown in Figures 6.10b and 6.10c, one observes a change in the
pattern. The increasing number of features already pointed towards a
topologically more complex pattern which agrees with the change from
a stripe pattern to a spot pattern. Thus, our approach does not only
allow us to quickly identify the parameter value at which the topological
structure changes but also the topological complexity of the simulation
output in different parameter ranges.

6.5.3 Cavity Flow in 3D

Finally, we apply our algorithm to a 3D simulation ensemble studying
lid-driven cavity flow. The lid-driven cavity flow, whose creation is ex-
plained in more detail in Appendix B.3, describes the flow in a cavity
that is induced by moving the top lid. Each of the 10 simulation runs
consists of 99 time steps with a spatial resolution of 32× 32× 32. We
consider the magnitude of the flow velocity field that depends on the
Reynolds number Re. For this dataset, we investigate the dependency on

140 topological analysis of parameter dependencies

b

(a) Stacked landscapes.

(b) b = 8.5.

(c) b = 9.0.

Figure 6.10: The stacked landscapes for the reaction-diffusion dataset show a
change in the topology for large parameter values b. The different
topological features can be investigated when comparing the land-
scapes of the different timesteps to the visualization of the data (see
b and c). Here we see that the pattern transitions from stripes to a
spot pattern.

the parameter value as well as the temporal evolution. For this dataset,
we remove noise by keeping only features with a persistence larger than
2% of the data range.

We start by analyzing the influence of the parameter. Therefore, we
choose the last time step, where the flow pattern is fully formed. The
results for specific values of Re are shown in Figure 6.11. With an in-
crease in the Reynolds number, we observe a variation in the number
of peaks in the topological landscapes indicating variations in the com-
plex dataset topology. We also observe features occurring in each sim-
ulation run, like the orange, relatively central peak. However, this peak
decreases in height with an increasing Reynolds number. The topologi-
cal changes might be explained by the flow becoming less laminar with
an increase in the Reynolds number.

To study how the flow patterns emerge, we investigate the temporal
evolution of the data. Here, we choose Re= 1000, which corresponds
to a more complex landscape. When viewing the animation, one can
identify features that emerge early and persist over the simulated time.
Figure 6.12a shows the topological landscape and a volume rendering of
the scalar field after ten timesteps. Several features emerge and vanish

6.6 discussion 141

0 1

(a) Re= 200. (b) Re= 400.

(c) Re= 600. (d) Re= 800.

Figure 6.11: Observing the coherent landscapes for different values of the
Reynolds number Re reveals that the number of topological features
increases if the Reynolds number increases. Here, the volume render-
ings of the scalar fields (left) are shown together with the topological
landscapes (right)

over time until we reach the final state shown in Figure 6.12b. When
comparing this topological landscape to the one at the tenth timestep,
we observe that the peaks persist, but also additional peaks are present.
Thus, our approach allows for tracking the evolution of the topological
structure over time as well as over a parameter value. This application
shows that our approach can also be used to study topological features
in 3D data whose dimensionality is reduced to 2D by creating the topo-
logical landscapes.

6.6 discussion

In this chapter, we presented an approach for investigating topological
changes over the variation of an input parameter of the ensemble or over
time. We create coherent topological landscapes by matching the nodes
in merge and split trees to create coherency between contour trees. The
topological landscapes can be visualized by rendering them as an anima-
tion over the parameter value, but we also include a static visualization
by stacking the landscapes ordered by the parameter value. The result-
ing volume can be shown using direct volume rendering. We verified our
approach on a 2D dataset and also applied it to 2D and 3D simulation
ensembles.

142 topological analysis of parameter dependencies

0 1

(a) After 10 time steps. (b) End of simulation.

Figure 6.12: In the temporal variation of the topological landscapes for the lid-
driven cavity flow, the first features emerge, as can be seen in the
volume rendering as well as in the topological landscape (a). The flow
velocity magnitude field increases in complexity leading to a more
complex topological landscape (b). The features that could already
be observed at timestep 10 persist until the end of the simulation.

Our visualizations show abrupt changes if the underlying topology
changes (see Section 6.5.1). While this can be desirable because the sud-
den changes in the visualization encode changes in the topology, the
scalar field does not change suddenly. Therefore, the sudden changes
might be undesirable, especially for analysis goals that do not require
highlighting the changes in topology. Future work could consider avoid-
ing these sudden changes in the visualization.

Another aspect that can be improved is the computational efficiency.
Current computation times are in the range of seconds up to a few min-
utes, even though the datasets are comparatively small. However, as the
creation of the meta tree structure forms a pre-processing step, an inter-
active analysis can still be achieved with this approach. The computation
times could be sped up significantly, for example, by parallelizing the
approach.

For matching the nodes representing topological features, we pro-
posed to minimize a distance metric that covers different facets, can
be generally applied, and flexibly adapted as the users can modify the
weights. On the other hand, this includes the weights as a set of parame-
ters for our approach. While a suitable choice of parameters is important
for meaningful results, we found that no extensive parameter tweaking
was necessary for the use cases presented in the paper. However, the
impact of the different facets requires a better understanding. Also, a
more detailed comparison to other matching approaches, as presented
in Section 6.1.2, would be beneficial. Our visualizations of the varia-
tions over the parameter values only require the discussed meta tree
structure, which can also be created by using other merge tree match-
ing approaches. Therefore, a detailed study that compares the different
approaches and provides a guideline on when to use which matching
strategy would be beneficial.

6.6 discussion 143

Finally, the current implementation of the approach only supports in-
vestigating the variation over one parameter. However, as discussed in
the previous chapters, simulation ensembles often depend on multiple
parameters. Therefore, the approach could be extended to cover the vari-
ability over multiple parameters. One could include the time component,
leading to a flexible approach for studying the topological variation for
multiple facets of the ensemble data. While the iterative matching could
be generalized to multiple dimensions, the order of the matching would
significantly influence the results, which requires finding a suitable start-
ing point and order for matching the additional trees.

7
S PAT I A L G L O B A L S E N S I T I V I T Y A N A LY S I S

After aiming to understand the qualitative influence of the parameters
on the simulation outcome, it is also important to obtain an overview of
which parameter influences the simulation result most and how these
values vary over the spatial domain. In global sensitivity analysis, typi-
cally, one or more sensitivity values per parameter and simulation out-
put are computed. In simulation ensembles it is desirable to understand
the spatial variations in the sensitivity to input parameters. For exam-
ple, this is important in medical simulations. Close to risk structures like
tumor tissue, less sensitivity is desired for successful treatment without
harming too much healthy tissue, while in other regions, a higher sensi-
tivity might be tolerable.

If the spatial sensitivity values are computed, one obtains one scalar
field per input parameter. Therefore, it is necessary to analyze multi-
ple fields to cover the sensitivities of all parameters. Visually analyzing
3D multi-field data is challenging, especially due to occlusion problems.
This is one of the reasons that spatial sensitivity analysis is still little
explored [295].

In this chapter, we propose a visual analysis approach for interactively
investigating the spatial distribution of parameter dependencies. Our
approach builds around a novel overview visualization that supports a
global overview of all spatial locations without suffering from occlusion
like 3D volume visualizations. For this purpose, we apply data-driven
space-filling curves to multi-field data and analyze the properties of our
adaptations. We embed this overview visualization in a visual analytics
solution that also allows for analyzing the sensitivities on different levels
of detail and visualizing the qualitative dependency of the simulation
output on the input parameters. While our approach can be applied
to different sensitivity computation methods, we discuss three methods
and their advantages and drawbacks. By comparing the algorithms used
in our approach to alternative choices, we derive clear guidelines for
choosing the best algorithm for the corresponding application. Finally,

145

146 spatial global sensitivity analysis

we show the utility of our approach by presenting the analysis of two
real-world use cases from the medical domain.

We start with providing the relevant background for the techniques
used in this chapter in Section 7.1. After specifying the problem in Sec-
tion 7.2, we provide an overview of our solution in Section 7.3. Our
design choices are described in Section 7.4. After an algorithmic evalua-
tion (see Section 7.5) and showing use cases (see Section 7.6), we discuss
the limitations of the presented work (see Section 7.7).

The results in this chapter are based on the following manuscript:

M. Evers, S. Leistikow, H. Rave, and L. Linsen, Interactive
Visual Analysis of Spatial Sensitivities, to be submitted

Simon Leistikow created the aneurysm simulations and provided feed-
back on the analysis. Hennes Rave implemented data-driven space-filling
curves in Voreen. I implemented all other parts of the approach except
the space-filling curves and created the results. All authors contributed
to writing and editing the manuscript of the paper.

7.1 related work and background

While sensitivity analysis was briefly mentioned in the context of param-
eter space analysis (see Section 2.2.1), we provide a more detailed view
of the current state of the art before presenting the background of the
sensitivity computation and visualization used in this chapter.

Several comprehensive overviews about sensitivity analysis are avail-
able [264, 136]. Approaches in the field of sensitivity analysis are com-
monly divided into local and global approaches [298]. Local sensitivity
analysis methods investigate how small changes in a parameter influ-
ence the simulation outcome while the other parameters remain fixed.
These methods have also been included in visual analysis approaches [34,
266, 33, 49]. However, while local approaches are often computationally
more efficient, they only provide a local perspective and might miss im-
portant features, especially for large parameter spaces. Global sensitiv-
ity approaches, instead, consider the whole parameter space but are only
tackled by few visual methods. Sobol indices, which are among the most
popular global sensitivity estimators (see Section 7.1.1.1), can be visual-
ized by Fanovagraph [116] using a graph-based visualization which was
extended by Yang et al. [389]. Ballester-Rippol et al. [23, 25, 24] propose
using tensor-train models to compute Sobol indices efficiently. However,
they focus on the sensitivity of single scalar outputs and do not include
the spatial component. Applying their methods to spatial data would be
computationally very expensive because each sample requires a tensor

7.1 related work and background 147

train surrogate. An alternative to the quantitative investigation of param-
eter space analysis are more qualitative approaches [221, 225]. Surrogate
models like InSituNet [148] can also be used to derive the sensitivities
to the input parameters directly. Note that we consider the sensitivity to
input parameters by using ensemble data. Ensemble sensitivity analysis
(ESA), however, usually refers to a technique for studying the sensitivity
on the initial conditions [341, 197].

These discussed approaches do not consider the spatial variation of
the sensitivities even though spatial sensitivity analysis became more
popular over the last years [209, 387]. Due to the lack of better encodings,
the spatial variations are usually shown side-by-side. However, Şalap-
Ayça et al. [295] experiment with stacked views. Their visualization is
only applicable to 2D data, and the authors identify the visualization of
spatial sensitivities as an open research question. Closest to our work
is the approach by Biswas et al. [37], who investigate spatial variations
in the sensitivity of temporal data. They use maps combined with clus-
tering, so their visualizations are also limited to 2D data. Thus, to our
knowledge, our approach is the first one that allows for visual analysis
of spatial sensitivities for 3D domains.

7.1.1 Global Sensitivity Measures

In the following, we will present a brief overview of the basic ideas
and potential limitations of different sensitivity analysis methods used
in this thesis. Note that the sensitivity measure for our approach can be
easily exchanged depending on the data and analysis tasks that should
be analyzed. Other popular sensitivity measures that we did not con-
sider include the Fourier amplitude sensitivity test (FAST) [299] and the
Morris method [234].

7.1.1.1 Sobol Sensitivity Indices

Sobol indices [318, 298] are one of the most common global sensitivity
analysis methods. The Sobol decomposition, which belongs to the anal-
ysis of variance (ANOVA) methods, is based on distributing the total
variance D = Var[f] of a function f to the variances of the individual
parameters and their combinations. It assumes that a function can be
written as a sum of subfunctions where each of these subfunctions de-
pends on a subset of the input parameters and, thus, assumes that the
input parameters are independent. Using this decomposition, it is possi-
ble to decompose the total variance as D =

∑
α Vα where α is a tuple

that refers to the included variables. The Sobol indices are defined as

148 spatial global sensitivity analysis

D
e
n
si
ty

y

(a) δ.

all

(b) DGSA.

Figure 7.1: The basic idea for computing the similarity measures δ, and DGSA is
considering the change in distributions when fixing initial parameters.
a) δ uses the density function of the output. b) DGSA considers the
shift in the CDFs between different clusters ci.

Sα = Vα/D leading to
∑

α Sα = 1. Thus, the Sobol indices indicate
which fraction of the variance corresponds to each parameter (or combi-
nation of parameters).

In addition to the high number of indices Sα, there are derived indices.
Among the most common ones are the total indices which attribute the
complete effect to a set of input parameters α. They are defined as the
sum of all Sobol indices whose tuples are not disjoint with α, which can
be written as STα =

∑
{β|β∩α̸=∅} Sβ.

Commonly, Sobol indices are computed by using Monte Carlo meth-
ods. As many samples are needed, and the number of samples scales
poorly with the dimensionality of the parameter space, often surrogate
models are used. Surrogate models approximate the simulation in a com-
putationally efficient way, thus allowing for obtaining a higher sampling
of the parameter space. However, finding a suitable surrogate model is
a challenging and non-trivial task. A stable yet efficient computation of
Sobol indices can be achieved using dedicated sampling strategies that
create uniform samples of the parameter space. The sequence initially
proposed by Sobol [318] has been extended by Saltelli [297] for more
efficient computation. When computing the sensitivity indices in this
work, we used the implementation provided by SALib [156, 164].

7.1.1.2 Delta Sensitivity Measure

An alternative metric to compute global sensitivities is a measure called
δ [43]. While this measure is popular in operations research, it has also

7.1 related work and background 149

been used by Biswas et al. [37] to visually investigate the sensitivity in
weather ensembles. This sensitivity measure is built upon investigating
variations in the simulation output’s density function for variations in
the input parameters as shown schematically in Figure 7.1a.

Let fY(y) be the density function for output value y where the total
output Y with a free variation of all parameters is considered. fY|Pi

(y)

denotes the density if parameter Pi is fixed to value pi. For comput-
ing the sensitivity measure δi, the shift s(Pi) between these two density
functions is considered, leading to

s(Pi) =

∫
|fY(y) − fY|Pi

(y)|dy .

The sensitivity measure δi can then be defined as

δi =
1

2
EPi

[s(Pi)] , (7.1)

where EPi
[s(Pi)] denotes the expectation value of s(Pi) which can be

computed as

EPi
[s(Pi)] =

∫
fPi

(pi)

[∫
|fY(y) − fY|Pi

(y)|dy
]

dpi .

Thus, one obtains a value δi with 0 ⩽ δi ⩽ 1 [43]. Stronger expected
shifts in the density function f lead to higher values of δi and, thus,
indicate a stronger sensitivity on the parameter Pi. As discussed by Bor-
gonovo [43], this sensitivity measure is global, quantitative and model-
free, which means that no prior assumptions about the model are neces-
sary. Additionally, strong assumptions about the sampling scheme, like
for the efficient computation of Sobol indices, are not required.

While Equation 7.1 only defines the computation of the sensitivity
measure δ for single parameters, the extension to investigation inter-
actions between multiple parameters is straightforward by fixing more
than one parameter. For this work, we also used the implementation
provided by SALib [156, 164] but removed the additional computation
of Sobol indices to obtain comparable timings.

7.1.1.3 Distance-Based Generalized Sensitivity Analysis

A third alternative is the distance-based generalized sensitivity analy-
sis (DGSA) proposed by Fenwick et al. [103]. DGSA is a global sensi-
tivity analysis method based on clustering and cumulative distribution
functions (CDF). Other than the efficient computation of Sobol indices
but similar to the δ sensitivity, it does not depend on specific sampling
functions and can be applied to existing datasets that were created for

150 spatial global sensitivity analysis

multiple purposes. Additionally, it can be applied to other than scalar
data.

The main idea of this approach is to divide the simulation outcome
into similar groups and calculate the distances between the CDFs for
each of these groups to quantify their differences in parameter space.
Therefore, we first need to find a clustering of the ensemble members.
The approach initially proposed by Fenwick et al. [103] uses k-medoids
clustering. It works similarly to k-means but uses actual data points as
centers for the clusters. The parameter k denotes the number of clusters
and depends on the dataset.

In this chapter, we work on scalar values. Therefore, we choose the
deterministic Fisher’s natural breaks algorithm [109] which copes well
with multi-modal distributions of the data. Similar to k-means, the al-
gorithm minimizes the average deviation from the mean of the cluster
while maximizing the deviation from the means of the other clusters.
Due to the 1D structure of the data, a dynamic programming approach
can be used which finds a global optimum. However, similar to k-means
or k-medoids, Fisher’s natural breaks algorithm requires the number of
clusters k as an input parameters.

We apply DGSA to spatially varying data and also the number of clus-
ters might vary spatially. In general, the choice of a suitable value for k

is a non-trivial task. Therefore, we include an automatic screening in
which we compute the clusters for k = 3 to k = 10 and compute silhou-
ette coefficient in each case. Using the silhouette coefficient to estimate
the number of clusters is a standard method [393]. As the final value
for k, we choose the clustering with the highest silhouette coefficient. To
ensure a sufficiently large sample size in each cluster, clusters with less
than ten members are not allowed.

In the next step of the algorithm presented by Fenwick et al. [103],
a CDF F(pi|ck) can be computed for each identified cluster ck and for
each parameter pi. If the data is sensitive to parameter pi, the functions
differ, while similar functions indicate no sensitivity. Quantifying these
differences, thus, provides a sensitivity measure for this parameter.

The distance between two CDFs can be computed by calculating the
area between the functions as shown in Figure 7.1b. In the case of DGSA,
we want to calculate the distance dk,i between a CDF F(pi|ck) for a
single cluster ck to the CDF F(pi) of all samples in the whole ensemble:

dk,i =

∫pi,max

pi,min

|F(pi|ck) − F(pi)|dpi .

However, directly interpreting the distance values is difficult. To make
the distances generally interpretable, the statistical significance of the

7.1 related work and background 151

distance is computed. A bootstrapping procedure is used to calculate
the 99% quantile of distances in randomly selected subgroups. There-
fore, we select B randomly sampled subsets of the original dataset. We
calculate the distance to the total CDF F(pi) for each subset. After de-
termining the 99% quantile d̂k,i, we can reject the null hypothesis that
there is no difference between the different distributions for the clusters
ck if dk,i > d̂k,i for any k. To make the outcome easier to interpret and
reduce the sensitivity computations to a single number, the computed
distances can be normalized as dSk,i = dk,i/d̂k,i. The simulation out-
come can now be considered sensitive to parameter pi if dSk,i > 1. Aver-
aging over the normalized dSk,i for all clusters ck leads to a quantitative
sensitivity value for parameter pi. However, computing the average of
the distances for K clusters as s(pi) = 1

K

∑K
k=1 d

S
k,i reduces the influ-

ence of outliers. This might result in s(pi) < 0 even if single clusters
show a statistically significant deviation from the CDF of the complete
ensemble. However, depending on the analysis goals, one might choose
the maximum of the values dSk,i instead of the average. In this chapter,
we analyze the overall sensitivities and use the average.

For this chapter, we included an implementation of this approach into
Voreen. The advantage of this sensitivity measure is easy interpretability:
The normalization allows for a straightforward interpretation of whether
the output is sensitive to a parameter. Therefore, it is advantageous if fac-
tors other than parameters influence the outcome, such as initial condi-
tions. However, the output quality strongly depends on the choice of the
parameters (see Appedix A.3), such as the number of iterations which
are not necessary for the other methods presented in this chapter.

7.1.2 Space-filling Curves

A space-filling curve (SFC) is a curve that covers all points in a multi-
dimensional space. Various SFCs have been proposed over the last few
years. Among the most well-known ones are the Peano curve [256] and
the Hilbert curve [157] (see Figure 7.2a). These SFCs are constructed
recursively and preserve the locality well. However, they do not con-
sider the underlying data, which might lead to splittings of features
when plotting the data over the SFC. This was also observed by Zhou
et al. [399], who address this problem by adapting context-based space-
filling curves [74]. Data-driven space-filling curves [399] define an objective
function considering local variation and data coherency.

In the first step, Zhou et al. [399] create a dual graph of the graph of
small circuits. For the optimization function W, they use a weighted av-

152 spatial global sensitivity analysis

(a) Hilbert curve. (b) Circuits for data-driven space-filling
curve.

Figure 7.2: Space-filling curves like the Hilbert curve (a) visit every spatial po-
sition. A data-driven space-filling curve can be computed by joining
circuits Ci and Cj while minimizing an optimization function based
on the data values si (b).

erage of a term for value coherency and a term for locality preservation.
The cost W(Ci,Cj) of adding circuit Cj is defined as

W(Ci,Cj) = (1−α)N(Ci,Cj) +αR(Ci,Cj) .

where Ci and Cj denote adjacent circuits, α is the weight factor, N the
feature preservation term that is also used in context-based space-filling
curves [74] and R the term covering locality preservation. Note that both
terms are normalized to the range [0, 1]. The feature preservation term
can be written as

N(Ci,Cj) = d(s2, s3) + d(s6, s7) + d(s3, s4) + d(s7, s8)

+ d(s4, s8) − d(s2, s6) − d(s3, s7) , (7.2)

where si are the scalar data values on the different grid positions as
shown in Figure 7.2b and d(sa, sb) = |sb − sa| denotes the distance
function between two vertices. The spatial domain is divided into a user-
defined set of blocks for local coherency. The locality preservation term
is defined as

R(Ci,Cj) =
∥∥∥(Cj.x,Cj.y) − (SCj

.x,SCj
.y)
∥∥∥ ,

where SCj
is the center of the block. As Zhou et al. [399] found that

α = 0.1 produces good results, we also use this factor in this chapter.
SFCs allow for linearizing the data and, thus, reducing the dimension-

ality to 1D. Recently, 1D projections of spatial data, including ensembles,
have been used to detect patterns [113, 54, 384]. Ensemble data have also

7.1 related work and background 153

(a) Area chart.

(b) Division in bands.

(c) Move bands to baseline.

Figure 7.3: Horizon charts are created by using an area chart (a), dividing it into
bands (b), and moving them to the baseline (c).

been analyzed using enhanced line charts [77]. The analysis of volumet-
ric ensemble data can also be supported by using a nonlinear scaling
of a Hilbert curve [370]. However, all of these approaches focus on vi-
sualizing the simulation output and on ensemble variations. Thus, this
approach cannot be applied to visualize the spatial sensitivities as these
volumes might differ significantly.

7.1.3 Horizon Graphs

Horizon Graphs [107, 283] were initially proposed to visualize a large
set of time series. They use small multiples to visualize each time series
individually. Layered area charts reduce the space required for each time
series while allowing for an accurate reading of the data values.

The first step in creating horizon graphs is the creation of an area
chart as shown in Figure 7.3a. The graph is then horizontally divided
into discrete, equally sized bands where the number of bands is fixed.
Thus, the size of the bands is adapted to the data. The different bands

154 spatial global sensitivity analysis

are color-coded using a suitable color scheme to convey the bands’ dif-
ferent heights, as seen in Figure 7.3b. In the last step, the height of the
visualization is reduced by collapsing the different bands and showing
them on top of each other, as shown in Figure 7.3c.

Horizon graphs have several advantages in the visualization of one-
dimensional data. Besides allowing for reading off values precisely, they
avoid visual clutter that often occurs if several line charts are shown to-
gether. It also reduces the need for space compared to showing individ-
ual line charts for each curve. On the other hand, horizon graphs need a
lot of vertical space, which is not always available, especially when using
multiple linked views. At the same time, the spatial separation of indi-
vidual series makes comparisons less accurate compared to combined
line charts.

7.2 problem specification

Similar to the previous chapters, we investigate a simulation ensemble
with |P| input parameters, which we assume to be numerical. The simu-
lation run rj is characterized by the parameters Pi(rj) with i = 1, ..., |P|.
We only consider scalar simulation data for this work such that the sim-
ulation output is a single, two- or three-dimensional scalar field.

This chapter aims to analyze the simulation output’s dependency on
the input parameters. Therefore, we identified four individual tasks that
have been discussed in the literature as important for ensemble analysis:

T7.1 Determining the quantitative influence of individual parameters. The
simulation outcome’s sensitivity on the input parameters should
be quantified. This allows for identifying the most relevant param-
eters, which could be used for a denser sampling in this parameter.
Identifying parameters of less influence allows for providing fewer
samples in that parameter while creating simulations and allows
for putting less focus on the dependency on this parameter during
the analysis process.

T7.2 Analyzing spatial parameter sensitivities. Different spatial regions of-
ten vary in their importance for data analysis. For example, the
regions around risk structures in medical applications are com-
monly more interesting than other spatial regions. The sensitivity
measure is evaluated in each spatial position individually to obtain
the spatially resolved sensitivities. These spatially resolved sensi-
tivities should then be evaluated to identify regions of high or low
sensitivity.

7.3 overview 155

Preprocessing Interactive Analysis

Surface Rendering

Sensitivity
Volumes

Space Filling
Curves Parameter Dependency

PCP

Spatial Sensitivity

Sensitivity Details
E
n
se

m
b
le

Figure 7.4: Sensitivity volumes are computed in a preprocessing step and can be
interactively analyzed.

T7.3 Investigating relations between the sensitivities to different parameters.
Instead of investigating the sensitivity of single parameters one
after the other, the sensitivities should be considered together to
identify influences between the different parameters. Studying pair-
wise correlations between the sensitivities to different parameters
should also be possible to support a better understanding of the
underlying model.

T7.4 Visualizing the qualitative dependency of the simulation outcome on the
input parameters. It should be possible to observe how the simula-
tion outcome varies with the input parameters in selected spatial
regions of interest, which might be regions strongly sensitive to
one or several input parameters (see task T7.1). For example, the
users should be able to identify whether the simulation result in-
creases or decreases in the respective region.

7.3 overview

To address the different analytical tasks, we follow a visual analysis
pipeline presented in Figure 7.4. We compute sensitivities for each spa-
tial sample to study the quantitative dependency (task T7.1) and sup-
port a spatially resolved analysis (task T7.2). In this work, we include
three different sensitivity measures, but they could be easily exchanged.
We obtain one volume of sensitivity measures for each parameter by
computing the spatially resolved sensitivities. Note that it is also possi-
ble to directly cover interactions between parameters in the sensitivity
measure, for example, by considering higher-order Sobol indices. The
resulting additional sensitivity volumes can be directly included in the

156 spatial global sensitivity analysis

analysis. Thus, we obtain at least |P| volumes, one for each parameter,
which should be analyzed together. In the following steps of the analy-
sis process, we focus on analyzing this multi-field data.

The multiple sensitivity values should be visualized to analyze the
influence of the different parameters on the outcome (task T7.1). Thus,
we want to analyze spatially resolved multi-dimensional data. This is a
common multi-dimensional data visualization problem. Therefore, we
choose parallel coordinates (PCP) to visualize all spatial samples. Our
design choices are discussed in detail in Section 7.4.1. In the PCP, each
axis corresponds to the sensitivity to one parameter, and each polyline
corresponds to one spatial sample. PCP allows for analyzing the distri-
bution of the sensitivity values while also studying the correlations be-
tween adjacent axes, which supports investigating relationships between
parameters (task T7.3). Interactively reordering as well as brushing on
the axes facilitates the analysis. Additionally, it scales relatively well with
dimensionality (corresponding to the number of parameters).

However, PCPs do not encode spatial information. Therefore, we allow
brushing so users can select sensitivity ranges on individual or multiple
axes. The spatial samples in the selected ranges are visualized in the spa-
tial domain. This allows for investigating the spatial distribution of the
sensitivity values (task T7.2). A surface rendering shows the correspond-
ing regions selected by brushing. Note that we want to visualize a binary
volume of selected voxels. Therefore, we decide to show the surfaces of
the voxels, which leads to discrete steps in the rendering. However, they
are no undesired artifacts but instead prevent misinterpretations.

While these coordinated views provide spatial context to the parallel
coordinates, this method does not provide an overview for obtaining a
global understanding of the spatial sensitivity distributions (task T7.2).
Showing all sensitivity values in all fields at once in a 3D visualization
would also lead to large amounts of clutter. Therefore, we propose a new
visualization for obtaining an overview of spatial sensitivities. The sen-
sitivity values are visualized over a 1D linearization based on a precom-
puted space-filling curve (SFC) (see Section 7.4.2.1). We visually encode
the data using a combination of Horizon Graphs and line charts. Thus,
we obtain a scalable overview of the multi-field sensitivity volumes.

Investigating the sensitivity values indicates the quantitative sensitiv-
ity to the input parameters. Especially for parameters with high sensi-
tivity, a more quantitative sensitivity analysis is of interest. Thus, the
explicit dependency of the simulation output on the input parameter
should be visualized (task T7.4). This task is addressed using a heatmap-
based visual encoding which we refer to as parameter dependency visu-
alization. It shows the simulated values of different spatial positions over

7.4 visual design 157

a selected input parameter. We also use the SFC to linearize the spatial
positions to obtain coherency with the other visualizations. More details
are presented in Section 7.4.3. Thus, the users can identify patterns in
dependency on the input parameters.

We use brushing and linking to coordinate the different views. The
data visualized in the spatial visualization and the parameter depen-
dency visualization is defined by brushing in the PCP. Brushing is not
only possible in the PCP but also to select spatial regions in the spatial
sensitivity visualization. The lines representing the spatial samples in
the corresponding regions are highlighted in the PCP and shown in the
spatial visualization. The spatial sensitivity visualization, by definition,
already contains spatial information about the data. However, it is re-
quired to also show the spatial regions explicitly in a 3D encoding for
providing the spatial context in 3D space. It also allows for differenti-
ating between features of interest and possible artifacts caused by the
linearization of the domain using the SFC.

We implement our approach as a web-based analysis tool using Dash,
Plotly [269], D3 [45], and vtk [303].

7.4 visual design

The volumes containing the sensitivities to the different parameters are
formed by computing the sensitivity measure for each spatial sample
separately. While some measures also allow for computing indices that
measure the interactions between the parameters, like second-order Sobol
indices, we do not treat them explicitly in this work. These interactions
are not conceptually different from the single parameter sensitivities
and, thus, can be directly included in the analysis approach.

7.4.1 Parallel Coordinates Plot

We use parallel coordinates to obtain an overview of the quantitative sen-
sitivities (task T9.1). We want to analyze the parameter values for each
parameter for all spatial samples, corresponding to a multi-dimensional
data visualization task. PCP is a common approach for visualizing scalar
multi-field data as it scales well with the number of dimensions and con-
tains the complete information of all fields without the need to aggregate.
Parallel coordinates scale better than table-based approaches or SPLOMs
and, thus, allow for analyzing higher-dimensional parameter spaces or
including interactions between parameters, which would significantly
increase the number of fields.

158 spatial global sensitivity analysis

Figure 7.5: PCP allows for obtaining an overview of the sensitivity values. Each
axis shows the sensitivity to one parameter setting, and each polyline
represents one voxel. In this example, DGSA is used where values
larger than 1 indicate a sensitivity to the corresponding parameter.
This threshold is shown as a red dashed line.

Each sensitivity volume representing the sensitivity to a single param-
eter is shown as one axis. Thus, we obtain one axis per input parameter.
Each spatial sample is shown in parallel coordinates as one polyline. To
allow interactions with the PCP at interactive rates and data with higher
spatial resolutions, we apply a Monte Carlo subsampling. Then, each
polyline in the PCP represents one of the spatial Monte Carlo samples.

The horizontal screen space limits the scalability of PCP with the num-
ber of dimensions. Therefore, we support horizontal scrolling to allow
for higher numbers of axes. However, many axes without a pre-defined
order are still cumbersome to analyze. Therefore, we allow for reorder-
ing the axes based on the average sensitivity of the voxels. Thus, the
axis showing the parameter with the highest sensitivity is shown first.
Depending on the analysis task or for a more detailed analysis, some
parameters might be irrelevant to the current analysis. To reduce the di-
mensionality, it is possible to filter out irrelevant parameters. We allow
filtering based on a user-defined threshold for the average sensitivity
value.

The quantitative sensitivities of the parameters can be directly com-
pared by observing the PCP. To facilitate comparative analysis, we scale
all axes equally. This also avoids misinterpretations, as all axes are com-
parable. For normalized sensitivity measures such as δ or Sobol indices,
the axes can also be scaled to the range [0, 1]. The sensitivity computed
by DGSA allows for differentiating whether a voxel is sensitive or not
depending on the sensitivity value exceeding the threshold of 1. To fa-
cilitate the visual analysis in the PCP, this threshold of 1 can be visually
conveyed by a dashed red line as shown in Figure 7.5.

7.4 visual design 159

Depending on the application domain, linking the sensitivity values
to other data might be desirable. For example, in the medical context,
one might want to include the ablation probability in the analysis di-
rectly. Another option is to include derived data like the mean field.
For this purpose, we support additional domain-specific information in
the parallel coordinates. For visually differentiating the additional axes
from the sensitivity axes, the sensitivity axes are placed inside a gray
box while the additional axes are rendered outside.

Besides getting an overview of the different sensitivity values, PCPs
also allow for analyzing the correlations between the sensitivities to dif-
ferent parameters (see task T7.3). Horizontal patterns indicate positive
correlations, while crossing patterns appear for negative correlations
between neighboring axes. Interactively varying the order of the axis
allows the investigation of the relations between different parameters.
More subtle patterns can be observed by brushing on the axes.

However, PCPs do not contain the spatial information of the underly-
ing volumes, but investigating the spatial positions of highly sensitive
voxels is of high interest. We achieve this goal by linking the PCP to a
surface rendering that shows the surface of the voxels in the intervals
selected by brushing on the axes.

7.4.2 Spatial Sensitivity Visualization

PCPs allow for an exploration of the distributions of the sensitivity val-
ues. By brushing and linking to a 3D visualization, it is also possible to
investigate spatial variations. However, a lot of interaction is necessary
to fully investigate the distributions in multiple fields based on the spa-
tial positions, which can become very time-consuming. Therefore, we
provide a global spatial overview visualization (task T7.2). This allows
for identifying regions where most parameters are sensitive and those
with sensitivities to single or no parameters.

For this spatial overview, we use space-filling curves (SFC) to create a
1D linearization of the 3D volumes. We can then show the sensitivities
directly over the SFC. This allows for reading off the different sensitivity
values and spot regions of interest while providing spatial context by
the SFC. We will start by explaining the computation of the adapted
SFC before describing the visual design to visualize multiple sensitivity
fields.

160 spatial global sensitivity analysis

7.4.2.1 Space-filling Curves for Multi-field Data

The algorithm by Zhou et al. [399] is targeted at single field data. If
we used one of the sensitivity volumes for the SFC computation, only
the features of this specific volume would be preserved. However, we
cannot assume that our sensitivity volumes are sufficiently similar; thus,
features in other volumes would not be preserved well. Therefore, we
generalize the value coherency term N(Ci,Cj) (see Equation 7.2) to con-
sider all fields while the locality preservation term can be maintained.

We need to choose a suitable distance measure between two grid
points to adapt the value coherency. On each grid point xi, the vector si
contains all sensitivity values. Different options for computing the dis-
tance d(sa, sb) between two vectors sa and sb exist. In this work, we
investigate the following options, which we evaluate in Section 7.5.3:

1. Sum of distances (L1-norm): The first option is generalizing the orig-
inally proposed measure by summing up the distances for each
field. This results in

d1(sa, sb) =
∑
i

|sb,i − sa,i| ,

where sa,i and sb,i are the i-th component of sa and sb, respec-
tively. This also corresponds to the distance measure proposed by
Dafner et al. [74] for RGB images.

2. Euclidean distance (L2-norm): The Euclidean distance is one of the
most common measures between two vectors and is defined as

d2(sa, sb) =
√∑

i

(sb,i − sa,i)2 .

3. Sum of squared distances: As computing the square root for the Eu-
clidean distance might be computationally expensive, one often
considers the sum of squared distances, which are given as

d3(sa, sb) =
∑
i

(sb,i − sa,i)
2 .

4. Cosine distance: The cosine similarity is a common similarity mea-
sure between vectors. When mapping the similarity to normalized
distances, it can be written as

d4(sa, sb) = 1−

∑
i sb,isa,i√∑

i s
2
b,i

√∑
i s

2
a,i

.

7.4 visual design 161

Note that the cosine similarity in our case lies in the range [0, 1]
instead of [−1, 1] because all sensitivity values are supposed to be
positive.

The distance measures d1 to d3 are also normalized to [0, 1]. The distance
measure for single fields, as used by Zhou et al., is included as a limit
case in the definitions of d1 and d2.

7.4.2.2 Combined Horizon Graph Visualization

The sensitivities for the different fields can be shown over the SFC. The
number of spatial samples usually exceeds the number of pixels avail-
able on standard screens. Weissenböck et al. [370] use a nonlinear scaling
based on the variance of the data to reduce the space needed for visual-
ization. However, in our visualization, it is unclear which regions are of
higher interest than others and, thus, should be preserved by a nonlin-
ear scaling. Instead, we use a spatial subsampling with the same sample
points chosen for the PCP. While the SFC is computed on the entire
sensitivity visualization, we only use the subsamples for rendering. If a
specific region of interest is identified, the users can still zoom into the
corresponding interval of the SFC and perform a more detailed analysis.

We considered several different design alternatives for the visualiza-
tion of the sensitivity values. One option is table-based visualizations,
where each volume is represented by one row, and columns represent
the voxels in the SFC order. However, reading off exact values in ap-
proaches such as heatmaps is difficult. While a TableLense approach [280]
would alleviate this problem, it does not scale to the high number of
voxels in a 3D volume. Another option is the visualization of all fields
together in a scatterplot or line plot, but the discrete scatterplot does
not represent the spatial coherency that we assume along the SFC and
quickly contains visual clutter when analyzing multiple fields.

The line plot can be well justified by the assumption of continuous
variations. However, rendering multiple line plots together is challeng-
ing to interpret due to overlap. Also, our data contains many fluctua-
tions, which worsens this issue. For better interpretability, we color the
areas below the lines and create a drawing order based on the sum of
the sensitivity values. Using this order, the lines of the sensitivity vol-
ume with highly sensitive voxels are drawn in the back leading to less
overlap with those that contain less sensitive voxels. Additionally, this
ordering is consistent with the default ordering of the PCP. A solid red
line can be drawn at the threshold value for better interpretability of sen-
sitivity values with a clear threshold, such as DGSA. Figure 7.6 shows
one example for using multiple line lots to show the sensitivities.

162 spatial global sensitivity analysis

Density_Vessel
BloodPerfusionRate_Tumor
Density_Tumor

SpeedOfSound_Vessel
Density_Liver
BloodPerfusionRate_Vessel
ThermalConductivity_Tumor

ThermalConductivity_Liver

SpeedOfSound_Liver
SpeedOfSound_Tumor
HeatCapacity_Liver
HeatCapacity_Vessel
ThermalConductivity_Tumor
HeatCapacity_Tumor

BloodPerfusionRate_Liver

Figure 7.6: The sensitivity values can be shown over the SFC using a line plot
where we draw the area below the curve and use a drawing order
based on the sensitivities. However, this visual encoding quickly leads
to overplotting.

Figure 7.7: Showing multiple juxtaposed Horizon Graphs allows for a decluttered
visualization but also requires a large amount of vertical space.

However, showing many sensitivity volumes together in a line plot
still leads to overplotting. An alternative would be showing the different
sensitivity volumes in several juxtaposed line plots that are stacked ver-
tically. To reduce the required screen space in the vertical direction, we
visualize the sensitivity values in Horizon Graphs [283], which were ini-
tially developed to visualize many time series. In the original approach,
the number of bands is fixed while the range is adapted to the data.
However, for our purpose, it is more meaningful to fix the height of
the bands. The height depends on the choice of the sensitivity measure.
For DGSA results, we fix the band height to 1 such that all insensitive
values are shown in the same color. For the other sensitivity measures
in the range [0, 1], we choose a band height of 0.2, leading to 5 bands
maximum.

The first band is colored gray. For DGSA, this band corresponds to
the non-sensitive values, and for the two other sensitivity measures, it

7.4 visual design 163

Density_Tumor

SpeedOfSound_Vessel
Density_Liver
BloodPerfusionRate_Vessel
ThermalConductivity_Tumor

ThermalConductivity_Liver

SpeedOfSound_Liver
SpeedOfSound_Tumor
HeatCapacity_Liver
HeatCapacity_Vessel
ThermalConductivity_Tumor
HeatCapacity_Tumor

Figure 7.8: Combining Horizon Graphs with a line plot allows for a trade-off be-
tween the properties of the different visualizations.

corresponds to sensitivity values ⩽ 0.2, which can in general be con-
sidered less sensitive even though it is not a general threshold. We use
discrete samples of a continuous white-to-red color map for the values
higher than these thresholds. Thus, more reddish colors indicate higher
sensitivity values. An example of multiple Horizon Graphs is shown in
Figure 7.7. This visualization allows for reading off the values directly
while also reducing clutter. However, a large amount of vertical space
is required, which is not always available. The individual plots often
become very small as we aim to include the visualization into a visual
analysis tool with multiple coordinated views.

We combine the two visualization approaches to obtain a trade-off be-
tween their advantages and drawbacks, as shown in Figure 7.8. While
Horizon Graphs require much vertical space, they do not suffer from
overplotting. The line plots use the available space efficiently but over-
plotting hinders the interpretability. Therefore, the first q sensitivity vol-
umes are shown as Horizon Graphs where the user can interactively
define q. The remaining sensitivity values are shown in a line chart. As
we maintain the default ordering based on sensitivity, the sensitivity vol-
umes of the most sensitive parameters are shown as Horizon Graphs,
while the less sensitive volumes are combined in the line chart. Reorder-
ing the PCP axes also influences the order in this visualization and, thus,
provides coherency between the two visual encodings.

Similar to the PCP, we allow for filtering based on the sensitivity. Ad-
ditionally, it is possible to brush in the spatial sensitivity visualization.
The polylines in the PCP that correspond to the selected spatial positions
are highlighted. The spatial positions are shown in the surface visualiza-

164 spatial global sensitivity analysis

tion. Even though the SFC provides spatial information, linking to the
3D domain is important to understand the spatial context intuitively.

7.4.3 Parameter Dependency Visualization

The PCP and the spatial sensitivity visualization allow for identifying
spatial regions of high sensitivities. The next goal is identifying the
qualitative dependency of the simulation outcome on the input param-
eter (task T7.4). For this purpose, we encode the simulation output in
a heatmap. Each row represents a single voxel where the rows are or-
dered according to the SFC. The columns represent the parameter values.
While using the columns to encode the voxels would provide a direct re-
lation to the spatial sensitivity visualization, we aim to show the change
in the simulation output with the variation of the parameter values. For
this purpose, showing the varying variable in the horizontal direction is
more intuitive [377].

We use the same subsampling to reduce the amount of data and be
consistent with the other visualizations. Further, we create a grid for ag-
gregating the data. For each grid cell, we compute the mean and aggre-
gate over the other parameter values not directly shown in the heatmap.
This procedure tends to smooth the data and also removes outliers. How-
ever, if the grid resolution is high enough, the overall trends are captured
sufficiently well. A grid resolution of 150× 500 is used for all examples
in this chapter. We choose a lower resolution in the x-direction because
the number of simulation runs and, thus, the number of parameter-space
samples is significantly smaller than the number of spatial samples.

For color-coding the cells in the heatmap, we use the perceptually uni-
form magma color map provided by matplotlib [350]. In the case of empty
cells in the heatmap, which can occur either if the parameter space is not
sampled densely or when selecting spatial regions in the linked visual-
izations, we visualize gaps in the heatmap as shown in Figure 7.9. This
allows users to see and consider the gaps in interpreting the data. At the
same time, the gaps in the visualization might complicate the analysis.
We address this issue by allowing the user to switch to a dense visual-
ization in which nearest neighbor interpolation is used to fill the gaps,
see Figure 7.9a for an example. Interactively switching between visual-
izations facilitates understanding and interpretation while still keeping
the awareness of missing data.

The proposed visualization for the parameter dependency allows for
identifying different features. One of them is changes in the data as
shown in Figure 7.9b. In this example, we see that the simulation output
increases with an increase in the parameter values. Our visualization

7.4 visual design 165

(a) Missing data encoded by gaps.

(b) Nearest neighbor interpolation.

(c) Motion of spatial regions.

Figure 7.9: The parameter dependency visualization shows the simulation output
as colors in a heatmap over the parameter values and the SFC. a) Gaps
in the heatmap indicate missing values but complicate the interpreta-
tion. b) For an undisturbed analysis, the gaps can be filled by nearest
neighbor interpolation. c) Besides changes in fixed positions, it is also
possible to visualize spatial variations driven by parameter changes.

166 spatial global sensitivity analysis

allows for estimating the spatial extent of this feature by considering
the number of heatmap cells that belong to it, as shown in Figure 7.9a.
Note that the size estimate is only meaningful when not using the in-
terpolation. However, one drawback of this visualization is the difficulty
of analyzing the nature of the increase in more detail which would be
easier using a line chart. Another feature that could be identified in our
visualization is the motion of spatial regions driven by parameter varia-
tion. The example shown in Figure 7.9c corresponds to a Gaussian that
moves across the volume. This is indicated by the high values visible in
different spatial positions. The feature is split into different regions of
the SFC. The SFC was computed based on the sensitivity values, while
the parameter dependency visualization shows the actual data values
which were not considered when defining the SFC. Nevertheless, the
feature remains visible in the visualization.

7.5 evaluation

In the following, we evaluate the choice of the distance measure for
computing the space-filling curve, followed by a comparison of the sen-
sitivity measures considered in this work. While we evaluate these two
algorithmic components based on quantitative quality metrics, the utility
of the visual design is shown in Section 7.6.

7.5.1 Datasets

We verify and evaluate our approach based on three datasets. At first,
we use a synthetic dataset with known ground truth. Additionally, we
use two simulation ensembles from the medical domain.

7.5.1.1 Synthetic Data

To verify the computation of the sensitivity volumes, we create a syn-
thetic dataset. The ensemble consists of 4096 members with a spatial
resolution of 32× 32× 32. Each ensemble member depends on the three
parameters a1, a2, and a3 that range from 0 to 1. While parameter a3
does not influence the result, the other two parameters influence three
Gaussian kernels. The scalar field g(x) for each ensemble member can
be computed as

g(x) = P1 · f(x; (7, 7, 7), 3) + P1 · P2 · f(x; (10, 25, 15), 3)

+f(x; (20, 20, 5+ P2 · 20), 3) + ζ,

7.5 evaluation 167

(a) Synthetic. (b) Radiofrequency ablation. (c) Blood flow.

Figure 7.10: Different simulation ensembles are used to evaluate our approach. a)
Gaussian kernels define the synthetic dataset. b) Showing the mag-
nitude of the flow created by a hemodynamics simulation reveals a
complex set of patterns. c) The temperature field in radiofrequency
ablation simulations (red/yellow volume rendering) together with
the underlying tissue (blue: vessels, violett: tumor) is visualized in a
volume rendering.

where f(x; (x1, x2, x3),σ) is a 3-dimensional Gaussian kernel with stan-
dard deviation σ centered at (x1, x2, x3) and ζ denotes uniform random
noise in the range [0, 0.01]. A volume rendering for a simulation member
is shown in Figure 7.10a.

7.5.1.2 Radiofrequency Ablation

For the first real-world dataset, we choose radiofrequency ablation simu-
lations. Radiofrequency ablation is a minimally invasive treatment used
to ablate tumors by heating the tissue. Simulations are used to predict
the percentage of ablated healthy and malicious tissue. However, the
tissue properties that are needed as input parameters are highly patient-
dependent and hard to measure but also highly influence the amount of
ablated volume [310, 3]. Therefore, simulation ensembles are created to
cover the uncertainty introduced by the choice of input parameters. As
the number of input parameters might be high, a parameter-space anal-
ysis can be used to find the most relevant parameters for the variation
in the output data. Sandeep Gyawali and Tobias Preusser (Fraunhofer
MEVIS, Jacobs University Bremen) provided the simulation tool for cre-
ating the dataset described in this section. An analysis of the parameter
dependencies was performed by Heimes et al. [151]. When analyzing
this dataset, we will compare our findings.

This chapter considers a radiofrequency ablation simulation ensemble
consisting of 1024 simulation runs. Each ensemble run contains only a

168 spatial global sensitivity analysis

single time step representing the temperature field with a resolution of
92× 92× 92. Figure 7.10b shows an example of an ensemble member.
The simulation outcome depends on 5 different tissue properties, which
are the tissue density, the heat capacity, the thermal conductivity, the
blood perfusion rate, and the speed of sound, where each one varies for
the three different tissue types liver, tumor, and vessel. Thus, we obtain
a 15-dimensional parameter space.

7.5.1.3 Blood flow simulations

As an additional example, we consider blood flow simulations. While the
goal is similar to the dataset used in Section 4.8.1, this dataset has a dif-
ferent geometry and input parameters. Here, we consider an aneurysm
as shown in Figure 7.10c. The simulation model is driven by four dif-
ferent parameters. The viscosity and the density of the blood influence
its flow properties. The third parameter is the maximal flow velocity of
a parabolic flow profile which is sampled at the inlet of the simulation
domain. The simulation is a so-called large eddy simulation that follows
a turbulence model. This model is driven by the so-called Smagorinsky
constant, which is a dimensionless model parameter.

The simulation ensemble consists of 320 simulation runs with a spa-
tial resolution of 257× 119× 128. In this chapter, we consider the flow
magnitude as a scalar field and aim to investigate the input parameters’
influence.

7.5.2 Comparison of Sensitivity Computation Methods

First, we want to compare different sensitivity computation methods.
While many other methods exist, we focus on the ones presented in Sec-
tion 7.1.1. We want to compare the sensitivity metrics concerning conver-
gence depending on the number of runs and computation times. Finally,
we will provide a visual comparison based on single slices and the de-
pendency on single parameters. We use the synthetic dataset presented
above for this evaluation but vary the number of samples. We sample
the parameter space using Saltelli sampling [297], which leads to 16 to
8192 samples.

To compare the sensitivity measures, we compute the spatial sensitivi-
ties for all three measures. To investigate whether the sensitivity indices
converge, we compute the difference of the sensitivity values for each
voxel to those of the same voxel but with fewer runs. Thus, we obtain
the differences when increasing the number of runs. These values are
aggregated over the sensitivity volumes by plotting the mean of the vol-

7.5 evaluation 169

(a) Convergence.

0 2000 4000 6000 8000
Number of runs

100

200

300

400

500

600

Ti
m

e
[s

]

(b) Timings.

Figure 7.11: The variation of the Sobol sensitivities decreases with an increasing
number of simulation runs (a), and the computational costs increase
(b).

ume. To show the variation, we show the range from the minimum to
the maximum as a band surrounding the mean.

Figure 7.11 shows the results for Sobol sensitivity indices. We observe
a significant variation for less than 1000 values that significantly de-
creases for larger numbers of samples. However, the computational costs
also increase significantly, where we observe an approximately linear
trend.

When observing the results for the δ sensitivity shown in Figure 7.12,
a decreasing trend can also be observed but is weaker than for the Sobol
indices. Additionally, there is an increase in the variation for 2048 runs.
However, the variation is significantly smaller compared to the Sobol
indices. Even though the values for both sensitivities cannot be directly
compared, both measures span the range [0, 1] and, thus, cover a compa-
rable range. This indicates that the δ sensitivity measure is less sensitive
to the number of runs. Even though the computation times are generally
higher, they are in the same order of magnitude and increase approxi-
mately linearly with the number of simulation runs.

For the DGSA sensitivity measure, the results are shown in Figure 7.13.
We cannot observe any decrease with an increase in the number of simu-
lation runs, and the variation is very large. However, it needs to be taken
into account that this sensitivity measure is not normalized between 0

and 1, but instead, sensitive voxels are larger than 1, where the exact
values of the sensitivity measure are less intuitive to interpret. The com-
putation times for DGSA are significantly larger and scale worse with
increased numbers of ensemble members. However, DGSA also depends
on additional parameters. For a detailed analysis, see Appendix A.3.

170 spatial global sensitivity analysis

(a) Convergence.

0 2000 4000 6000 8000
Number of runs

0

200

400

600

Ti
m

e
[s

]

(b) Timings.

Figure 7.12: The variation of the δ sensitivities decreases with an increasing num-
ber of simulation runs, but for 2048 runs, very high values can be ob-
served (a). For the computational cost, we also see an approximately
linear increase (b).

They are also compared visually to obtain a better understanding of
the different sensitivity measures. Figure 7.14 shows a single slice of
one sensitivity volume for the different datasets. We do not consider the
DGSA sensitivity measure for the ablation and aneurysm datasets, as
this method requires high computation times. For the Sobol sensitivity
measure, we only consider the first-order Sobol indices.

For the synthetic dataset, we observe that similar features are detected
by all sensitivity measures. Most prominently, the peak in the upper left,
which is strongly influenced by the parameter P1, whose sensitivity is
shown in the images, is detected by all methods. While Sobol sensitivity
and DGSA correctly identify the horizontal region as insensitive to P1,
the values for δ are slightly increased. For Sobol indices, the noise in
the background, where no features are present in the data, also appears
in the sensitivity volumes. This can be explained by the definition of
the Sobol indices, which are based on distributing the variance of the
output to the different input parameters. However, as the random noise
is independent of any input parameter, it cannot be attributed correctly.

In the case of the ablation dataset, we observe a central slice for the sen-
sitivity to the blood perfusion rate of the liver. The Sobol indices for this
volume are in the range [−0.43, 1.45], which is significantly outside the
range [0, 1] in which the indices are supposed to be located. This is a very
strong indicator that we did not use enough parameter-space samples to
estimate the Sobol sensitivities correctly and, therefore, observe a numer-
ical problem. However, considering the 15-dimensional parameter space,
choosing enough samples is computationally costly. The high number of
simulation runs also agrees with common criticism of the Sobol sensitiv-

7.5 evaluation 171

(a) Convergence (number of runs).

0 2000 4000 6000 8000
Number of runs

0

2000

4000

6000

8000

Ti
m

e
[s

]

(b) Timings (number of runs).

Figure 7.13: For the DGSA sensitivity measure, no convergence with a larger num-
ber of samples can be observed (a). The computational costs of the
method scale worse than those for the other techniques (b).

ity analysis, for example, Saltelli et al. [298] propose 17, 000 simulation
runs for 15 input parameters. The result for the δ-sensitivity measure
seems significantly more plausible. The general structure of the spatial
distribution shows smaller values on the boundaries of the domain, as
we can also observe for the Sobol index.

For the aneurysm, the Sobol sensitivity indices are often outside the
range [0, 1] indicating too few samples. We generally observe a similar
spatial structure for the δ sensitivity measure, even though the shapes
between the less sensitive regions vary slightly. The region highlighted
by the green box in Figure 7.14g shows no variation for Sobol indices.

The spatial structure is generally similar between the different datasets.
Every sensitivity method has their advantages. While Sobol indices are
widely spread, and the analysis of variances is intuitive to interpret,
they require a special sampling scheme. Even though we followed the
efficient Saltelli sampling [297], our number of simulation runs is sig-
nificantly too small. Additionally, the results for Sobol indices are not
meaningful if the simulation parameters are not the only factor influ-
encing the simulation output. Besides random noise, as in our synthetic
dataset, this also applies to initial conditions, which are often varied for
simulation ensembles.

The δ sensitivity measure generally provides smooth and plausible re-
sults even though the horizontal structure visible in Figure 7.14b does
not reflect a region sensitive to the analyzed parameter. However, the
variations are minor. Like the Sobol indices, this sensitivity measure can
be computed with reasonable computational costs. Using 32 cores on the
PALMA high-performance computer, the computations for the δ sensi-
tivity took around 45min.

172 spatial global sensitivity analysis

0

1

(a) Synthetic, Sobol. (b) Synthetic, δ.

0

9

(c) Synthetic, DGSA.

(d) Ablation, Sobol. (e) Ablation, δ.

(f) Aneurysm, Sobol. (g) Aneurysm, δ.

Figure 7.14: We show the same slice of a sensitivity volume for different sensitiv-
ity measures. For the synthetic dataset, we show the sensitivity to P1

(a-c), for the ablation dataset, we show the sensitivity for the blood
perfusion rate of the liver (d-e) and for the aneurysm, we show the
sensitivity to the inlet velocity (f-g). The green box points out a re-
gion where the structure varies between both sensitivity methods.

7.5 evaluation 173

(a) Positional coherency. (b) Value coherency.

Figure 7.15: The autocorrelations for the space-filling curves allow comparing the
different methods. For all results, all three datasets and the Sobol and
δ sensitivity indices are considered.

The computation times for DGSA are significantly higher, and the nu-
merical analysis showed that it does not converge with an increasing
number of samples. Therefore, we omitted DGSA in the comparison for
real-world data, even though results for the synthetic dataset do not
show any undesired artifacts. An advantage of DGSA is that it only de-
pends on the distances between the simulation results on the respective
spatial positions. The generalization to temporal data is straightforward
by choosing a suitable distance measure, which is not the case for the
other sensitivity measures. However, due to the disadvantages, we only
recommend applying DGSA if the other methods are unsuitable.

For the usage scenarios in this chapter, we choose the δ sensitivity
measure because it can be computed in reasonable times and requires
fewer simulation runs than the Sobol indices. They are not applicable
to the available data without running significantly more simulations or
defining a surrogate model. Additionally, the computation of δ does not
require a specific sampling scheme for efficient computation, such as
Sobol indices. Therefore, we consider this sensitivity measure as more
generally applicable in the field of spatio-temporal simulation ensem-
bles.

7.5.3 Space-filling Curve

Similar to previous works [399, 74], we evaluate our space-filling curves
using autocorrelation. For the measures of which the autocorrelations
are computed, we follow the definitions by Zhou et al. [399]. As a first
measure, we use the autocorrelation of the linearized data values. How-

174 spatial global sensitivity analysis

ever, considering multi-field data, we compute the autocorrelations for
each field individually and average over all fields. As a second measure,
we use the autocorrelation of radial Euclidean distances where we can
directly apply the proposed definition given as t(i) =

∥∥pi − (0, 0, 0)T
∥∥,

where pi denotes the spatial position of the i-th point on the curve.
To obtain a guideline on which algorithm to use, we compare the data-

driven SFCs with the four different distance measures but also include
the scanline algorithm providing a trivial linearization and the Hilbert
curve [157]. Those two SFCs do not consider the underlying data. For
a more efficient and comparable evaluation, we resized all datasets to
32× 32× 32. For each SFC, we considered the three datasets and their
Sobol sensitivity volumes as well as the δ sensitivity volumes. The au-
tocorrelations are computed separately and then averaged for each SFC
computation method.

The results are shown in Figure 7.15 (see Appendix A.4 for results
for the individual datasets). The scanline approach provides the worst
coherency for both criteria. The Hilbert curve performs best with regard
to positional coherency (see Figure 7.15a), which is to be expected due
to its definition. The data values are not considered when creating the
curve. The positional coherency is comparable between the four differ-
ent data-driven SFC approaches. However, the differences in the value
coherency are larger. There are differences in the best distance measure
between the different datasets, as seen in the separated results presented
in Appendix A.4, but they are relatively small. On average, the Euclidean
distance provides the best value coherency while preserving the locality
best among the data-driven methods. Therefore, it provides a good com-
promise between those two optimization goals and will be used for the
remainder of the work.

7.6 usage scenarios

In the following, we present the analysis of the synthetic dataset (de-
scribed in Section 7.5.1.1) to verify our visual encodings. Then, we an-
alyze two real-world datasets to show the general applicability. We use
the δ sensitivity measure and data-driven SFC with Euclidean distances
for all datasets.

7.6.1 Synthetic data

First, we use the PCP to obtain an overview about the general sensi-
tivity values. As shown in Figure 7.16, we observe that the parameter
P3 does not influence the result as the sensitivity values are very small.

7.6 usage scenarios 175

Figure 7.16: The PCP show that the simulation output is not sensitive to P3. When
selecting high values of the sensitivity to P1, the surface visualization
shows that the corresponding voxels belong to one of the Gaussians.

This meets our expectations based on the definition in Equation 7.3. The
other two parameters influence the result. For a better understanding
of the influence, we brush in the PCP to select a range of high sensi-
tivites in parameter P1. The kind of dependency can be investigated in
the parameter dependency visualization shown in Figure 7.9. Here we
see the linear increase in the simulation output which confirms our ex-
pectations.

To investigate the spatial variation in more detail, we use the spatial
sensitivity visualization shown in Figure 7.17. Here, we observe regions
sensitive to P1, P2, and both. We start by selecting the spatial region
which is sensitive to both parameters. As expected, the corresponding
voxels are located around the Gaussian, whose height is driven by the
product of the parameters. The parameter dependency visualization re-
veals the expected linear increase in both parameters. When selecting
the range that is only sensitive to P2, the parameter dependency visual-
ization shown in Figure 7.9c is obtained. As explained in Section 7.4.3,
it shows the expected spatial variation of the output data. To summa-
rize our results, all findings for the synthetic dataset agree well with its
definition.

7.6.2 Radiofrequency ablation data

As the ablation dataset depends on 15 input parameters, it is important
to identify the most influential ones. Because the ablation treatment aims
to destroy only the tumor, it is crucial that we identify the simulation

176 spatial global sensitivity analysis

Figure 7.17: The PCP shows that the simulation output is not sensitive to P3.
When selecting high sensitivity values to P1, the surface visualization
shows that the corresponding voxels belong to one of the Gaussians.

parameters contributing most to the temperature uncertainty, especially
in the region close to the tumor. While the tumor should be fully ab-
lated, as little healthy tissue as possible should be harmed. To obtain an
overview, we start with the PCP visualization. We can identify that for
several parameters, no significant sensitivity is detected, so that they can
be excluded from future analysis.

BPR_Liver BPR_Tumor TC_Tumor Density_Vessel HC_Tumor TC_Liver

Figure 7.18: The PCP for the ablation dataset shows sensitivities to the blood per-
fusion rate (BPR) and thermal conductivity (TC) of the liver and tu-
mor and the density of the vessel. Further parameter axes can be
accessed by scrolling in the PCP. A correlation between the vessel’s
density and the tumor’s heat capacity can be observed.

7.6 usage scenarios 177

Density_Tumor
Density_Liver

BloodPerfusionRate_Vessel

ThermalConductivity_Liver

HeatCapacity_Liver

HeatCapacity_Vessel

ThermalConductivity_Vessel
HeatCapacity_Tumor

Figure 7.19: A part of the SFC which shows comparably small sensitivity values
of the blood perfusion rate of the liver is selected. Even though the
tumor’s thermal conductivity and heat capacity are increased in this
region, the 3D visualization reveals that this selected region belongs
to the boundary of the liver.

PCP axes for the most influential parameters are shown in Figure 7.18.
We see that, by far, the liver’s blood perfusion rate (BPR) is the most
significant parameter, but also the BPR of the tumor is significant in var-
ious regions. By following the polylines between the axes, we can see
that those voxels that are sensitive to the tumor’s BPR are not the same
as those sensitive to the BPR of the liver and the thermal conductiv-
ity (TC) of the tumor. Additionally, we observe that voxels with a high
sensitivity to the densitity of the vessel are also highly sensitive to the
heat capacity (HC) of the tumor. These two observations indicate that
the tissue parameters do not only influence the simulation output in the
corresponding tissue regions.

Investigating the spatial variation of the sensitivity reveals that the
blood perfusion rate of the liver influences most regions. However, we
also spot a region with relatively low sensitivity to the blood perfusion
rate and increased values in the sensitivity to the thermal conductivity
and heat capacity of the tumor. When selecting this region in the spatial
sensitivity visualization as shown in Figure 7.19, the 3D surface render-
ing reveals that it is located at the boundary of the liver region and, thus,
in a region of less interest for the analysis of this ensemble.

As this simulation ensemble mainly aims at investigating the abla-
tion area, we include the probability of ablation in our analysis. Tissue
can be considered ablated if the temperature is at least 327.15K (54 ◦C).
For each voxel, we compute the percentage of simulation members that
exceed this threshold and, in the following, refer to it as the ablation
probability. As the spatial regions not ablated in any of the simulation

178 spatial global sensitivity analysis

(a) Surface visualization.

Temperature (K)

(b) Parameter dependency.

Figure 7.20: For a more targeted analysis, we only consider the voxels which are
ablated in some ensemble members but not in all of them. The param-
eter dependency visualization reveals a temperature decrease with an
increase in the liver’s blood perfusion rate.

runs are of little interest, we select an ablation probability > 0 and < 1

in the PCP. The selected voxels are shown in the surface visualization in
Figure 7.20a and belong to the boundary of the ablated area. The PCP re-
veals that the liver’s BPR is the most influential parameter in this region.
When investigating the dependency on this parameter, we obtain the re-
sult shown in Figure 7.20b. The visualization shows a clear temperature
decrease with an increase in the liver’s BPR. This can be interpreted as
a higher blood perfusion rate causing a cooling effect in the tissue.

In general, the findings for this dataset confirm the findings of Heimes
et al. [151], especially regarding the importance of the parameters. While
their analysis mainly focused on the variation of the ablation area over a
selected set of parameters, our approach allows a more general analysis
that can also be applied beyond the ablation area.

7.6 usage scenarios 179

7.6.3 Aneurysm data

(a) PCP.

(b) Spatial sensitivity visualization.

Figure 7.21: The outcome of the aneurysm dataset is mainly sensitive to the inlet
velocity, which can be seen in the PCP (a) and the spatial sensitivity
visualization (b). The spatial sensitivity visualization also includes
regions outside of the vessel which explains the large regions with a
sensitivity of 0.

As a second example, we analyze the aneurysm dataset. To obtain
an even number of samples in all dimensions, which is necessary for
computing the SFC, we resample the dataset to a resolution of 128 ×
64× 64. The PCP shown in Figure 7.21a reveals that the most influential
parameter is the inlet velocity. Only the viscosity is influential in some
regions, while the influence of the other parameters is negligible. The
spatial sensitivity visualization shown in Figure 7.21b reveals that almost

180 spatial global sensitivity analysis

All voxels Sensitive to the viscosity

(a) Surface rendering.
Velocity

Magnitude
(m/s)

(b) Parameter dependency visualization.

Figure 7.22: The largest region of the voxels sensitive to the density is located
in the aneurysm (a). The parameter dependency visualization (b) re-
veals only a minor increase but overall small velocity magnitudes.

all voxels that belong to the vessel or aneurysm are also sensitive to the
inlet velocity.

To investigate the regions sensitive to density, we select the corre-
sponding voxels in the PCP, see Figure 7.21a. The spatial positions are
also sensitive to the inlet velocity. The 3D visualization in Figure 7.22a
reveals that the spatial locations sensitive to the density are scattered
across the domain. However, the largest connected spatial region is lo-
cated in the aneurysm. This region can be related to the inflow region
which is known to show a circulating structure of the flow and marks the
transition from the laminar vessel flow to the more turbulent flow in the
aneurysm [46]. When observing the parameter dependency visualiza-
tion as shown in Figure 7.22b, we see only a minor increase depending
on the viscosity. However, we can observe that the velocity magnitude
is very small in these regions, reaching a maximum of 0.035m/s where
the maximum over the whole volume is 0.1m/s. Therefore, the obser-
vation of the increase should not be considered significant. In general,
for this dataset, we can conclude that computations of additional sim-
ulations should focus on the inlet velocity, where the viscosity should

7.7 discussion 181

also be considered as it influences on of the phenomena of interest. The
influence of the other parameters is very small and they can be can be
considered as less important for future analysis tasks assuming that the
parameter range in this simulation dataset was chosen large enough.

7.7 discussion

This chapter presents a method for interactively analyzing spatial vari-
ations in parameter sensitivities. We include three different sensitivity
measures, evaluate them and discuss their advantages and drawbacks.
To visualize multiple sensitivity volumes while reducing occlusion, we
propose to use an SFC to linearize the spatial domain. For this purpose,
we include different options to generalize data-driven SFCs to multi-
field data and identify the Euclidean distance as the most promising
distance measure. Based on these considerations, we propose an inter-
active visual analysis tool to investigate different aspects of parameter
sensitivity.

Our approach scales well with the number of parameters, as we showed
when analyzing the 15-dimensional parameter space. As discussed in
Chapter 4, dense samplings of higher-dimensional parameter spaces for
spatial simulation data are rare due to the high computational cost. To
analyze the sensitivity to the input parameters, more samples in the pa-
rameter space are required than for partitioning it. In the case that the
spatio-temporal simulation has more input parameters, it is possible to
run a pre-screening and only include those parameters in the further
analysis, to which the simulation output is most sensitive. Therefore, we
do not consider the scalability with the number of parameters a problem.
However, the scalability with the spatial resolution yields more chal-
lenges. Even though we partially alleviate this problem by applying a
subsampling, the number of samples required to avoid a significant loss
of information also grows the number of voxels in the original data.

We provided an algorithmic evaluation of the sensitivity computation
and the SFC, and the applicability of our visual analysis tool is shown
in three usage scenarios. However, a domain expert evaluation would be
beneficial for more insights into the approach’s utility. To better under-
stand the spatial sensitivity visualization, performing a user study that
compares the different designs might be beneficial. Also, alternative en-
codings of multi-field data exist, like multi-field volume renderings that
could be included in a more in-depth investigation. However, they do
not scale well with the number of volumes to visualize and quickly suf-
fer from occlusion.

182 spatial global sensitivity analysis

This chapter only considered a single scalar field for the simulation
output. However, for a broader applicability of the analysis approach,
an generalization to time-varying multi-field data would be desirable.
The sensitivity computation using DGSA could be directly generalized
by choosing a suitable distance measure for the clustering. For temporal
data it was already discussed by Fenwick et al. [103]. Also, generaliza-
tions to multi-field data could be easily included. However, applying
DGSA would also require a more efficient implementation to be applica-
ble to real-world data without subsampling the spatial resolution. After
sensitivity volumes are computed, the only visualization that needs to
be adapted would be the parameter dependency visualization to work
with the different simulation outputs.

In the future, sensitivity indices for the interactions between parame-
ters could be included in the analysis. The correlations between the dif-
ferent sensitivities provide a first hint towards relationships, but includ-
ing the statistical measures allows for a more in-depth analysis. While
this is straightforward for lower-order interactions by including the ad-
ditional sensitivity volumes, analyzing the qualitative parameter depen-
dency remains an open challenge. Additionally, the number of sensitiv-
ity volumes grows significantly if higher-order interactions should also
be analyzed. In this case, further adaptation to improve the scalability is
necessary.

Overall, our interactive visual approach supports a comprehensive
analysis of spatial variations in sensitivities to the input parameters. We
derived guidelines for choosing a suitable sensitivity computation algo-
rithm among three different options and generalized data-driven space-
filling curves to multi-field data.

Part III

U N C E RTA I N T Y- AWA R E A N A LY S I S O F
C O R R E L AT I O N S

8
S I M I L A R I T Y I M A G E S

Climate scientists are interested in studying time-varying phenomena on
different spatial scales. By investigating relationships between different
spatial regions, scientists obtain a deeper understanding of these phe-
nomena. Computing correlations is a common approach to study these
relations between different regions. In particular, homogeneous regions,
where time series behave similarly, exhibit high positive correlations. Ad-
ditionally, relations between more distant regions can be investigated by
using correlation analysis. In this context, also negative correlations are
of interest. For example, the pressure over Iceland and the Azores are an-
ticorrelated, and this coupling, also called the North Atlantic Oscillation
(NAO), heavily influences the weather over Europe.

Computing pairwise correlations between spatial regions leads to a
high number of correlation values as the size of the correlation matrix
scales quadratically with the number of samples. In analyzing simula-
tion ensembles, the spatial resolution is normally high and adds the
additional dimension of ensemble members that needs to be considered.
Developing a visualization of this matrix that preserves the global struc-
ture but also takes the spatial locations of the samples into account is a
challenging task. Therefore, a common approach is choosing a reference
point from which the correlation to all other spatial locations is com-
puted. While significantly reducing the number of correlation values,
this also results in a significant loss of information.

In this chapter, we present similarity images, where we use distances be-
tween colors to encode correlations among the different spatial regions.
We embed the spatial samples in a 3D space by mapping correlations
to a distance measure. The resulting samples can then be mapped to
colors. By applying the colors to the spatial positions, we obtain a color-
coded spatial visualization that we can use as input to a segmentation
algorithm. This segmentation leads to a significant reduction of the data
complexity by creating homogeneous regions of similar behavior. The

185

186 similarity images

following analysis steps can be based on these segmentations, see Chap-
ters 9 and 10.

In the following, we will provide an overview of related work in cor-
relation analysis in Section 8.1 followed by a problem specification in
Section 8.2. Our approach to computing similarity images is presented
in Section 8.3 while Section 8.4 describes how hierarchical segmentation
can be used to obtain homogeneous segments. After that, we validate
our approach using synthetic data followed by an application to real-
world data in Section 8.5.

The methods of this chapter are published in

M. Evers*, K. Huesmann* and L. Linsen, Uncertainty-aware
Visualization of Regional Time Series Correlation in Spatio-
temporal Ensembles, Computer Graphics Forum 40, No. 3: 519-
530 (2021) (* The authors contributed equally.)

All authors contributed to discussing ideas, writing, and editing the
manuscript. The results and implementation of this chapter based on
this publication were created in equal parts by Karim Huesmann and
me.

8.1 related work

Correlations are the most commonly used statistical measure for analyz-
ing time series and provide a similarity measure between the different
time series [270, 114]. Approaches [301, 171, 60] for correlation analy-
sis on spatial data compute the correlations among different fields in
multi-field data. However, these approaches do not consider correlations
among different spatial regions. Pfaffelmoser and Westermann [261] show
that correlations represent local phenomena in uncertain fields. Correla-
tions between different spatial regions are used in the context of climate
data where so-called climate networks [2, 39] are created by comput-
ing the correlations among different spatial regions. Then, a network is
formed where an edge corresponds to a correlation value that exceeds a
certain threshold. Nocke et al. [242] present a survey about the state of
the art technique in visually analyzing climate networks. However, they
identify occlusion and visual clutter as common problems and mainly
focus on improvements of node-link diagrams that also provide geo-
graphical context. Nocke et al. state that matrix-based visualizations do
not convey geographic information even though enhanced node-link di-
agrams provide too much clutter for global correlation analysis. Climate
networks have also been used to study correlations among spatial re-

https://dx.doi.org/10.1111/cgf.14326
https://dx.doi.org/10.1111/cgf.14326
https://dx.doi.org/10.1111/cgf.14326

8.1 related work 187

gions between two fields [75, 94], but they do neither investigate more
than two fields nor consider ensembles as input data.

In machine learning, correlation clustering is a technique using pair-
wise correlations to find clusters and maximize the correlations inside of
the cluster while minimizing the correlations to elements of other clus-
ters [26]. Zhang et al. [395] propose to use a distance metric that com-
bines correlations with distances and builds on a k-means clustering.
Like our approach, Sukharev et al. [326] use a dimensionality reduction
technique before clustering. However, they use PCA directly on the data
points and, thus, do not consider correlations among the different sam-
ples. Liebmann et al. [207] used hierarchical correlation clustering, but
their approach does not lead to spatially connected components.

Spatial clustering has been investigated in other contexts, for example,
using probability density functions [42], self-organizing maps [13], and
wavelets [380]. Nocke et al. [244] used clustering for data reduction in
climate data before visualizing the clusters. Correlation cliques [197] de-
scribe regions of highly correlated points but are based on a seed point
and, thus, do not form a global approach. Antonov et al. [17] study
long-range interactions in climate data, but their approach also strongly
depends on the choice of the seed point. Jänicke et al. [166] also use clus-
tering to apply wavelet analysis to larger datasets. However, they neither
work on correlations nor consider ensemble data.

Pfaffelmoser and Westermann [260] analyze global correlations similar
to our work, but they do not consider temporal data. Additionally, they
only work on two levels of detail which does not suffice for an in-detail
analysis. However, none of the discussed approaches analyzes global
spatial correlations in spatio-temporal simulation ensembles.

8.1.1 Watershed Segmentation

Many different segmentation algorithms exist. In the following, we pro-
vide a brief background on a watershed segmentation algorithm that
can be used for obtaining a hierarchical segmentation. These class of al-
gorithms is based on the concept of filling basins in a heightfield formed
by the data, where the flow of water is simulated to separate the differ-
ent segments. In this chapter, we use an efficient implementation [257]
of a graph-based watershed algorithm that operates on edge-weighted
graphs [238, 69].

Let G = (V ,E) be a graph with vertices V and edges E where each
edge ei,j = {vi, vj} between vertices vi and vj has a weight ωi,j. Based
on the edge-weighted graph, a binary partition tree can be computed. A
binary partition tree is a data structure that provides a multi-scale repre-

188 similarity images

sentation of an image [296]. More concretely, in the algorithm used here,
a binary partition tree by altitude ordering [70] is used where each node
corresponds either to an edge in the minimum spanning tree (MST) of G
or to a vertex v ∈ V . The root of the tree corresponds to the edge of the
MST that was added latest. The tree itself provides a strict ordering of
the edges of the MST, where the altitude of the edges in the tree defines
the ordering. If the edges of G are either already sorted or can be sorted
in linear time with respect to their weights, the computation complexity
for the binary partition tree is O(|E|×α(|V |)) where α(x) is the inverse of
the single-values Ackermann function and grows extremely slowly with
the argument x. To obtain a watershed hierarchy, the relevant watershed
edges are identified. An edge of the binary tree is marked as a water-
shed edge if it merges two segments that belong to different minima.
Thus, we can mark all edges as being watershed edges or not, which can
be achieved in linear run time in the number of edges. The watershed
hierarchy is obtained from the labeled graph by only keeping the water-
shed edges and removing consecutive tree nodes with equal altitudes.
The nodes of the watershed hierarchy form the watershed basins and
provide the lowest level of detail.

8.2 problem specification

In the following, we consider an ensemble consisting of m simulation
runs with n spatial samples. The ensemble can contain M different fields.
In contrast to the previous chapters, we do not view the individual en-
semble runs as spatial fields over time but instead look at the individual
spatial samples where each spatial sample contains a set of time series,
one for each ensemble member. Thus, each spatial sample xi, i = 1, ...,n
contains a time series as a function sikv(t) over time t for each simula-
tion run rk, k = 1, ...,m and each field v = 1, ...,M. Given a simulation
ensemble, we want to visualize the global correlation structure and find
homogeneous spatial regions. As the spatial complexity might vary sig-
nificantly among the different fields, we treat each field individually.
However, we want to capture the full variability of the simulation en-
semble. Therefore, we aim at a visual representation for the correlations
of each field of the spatio-temporal simulation ensemble.

8.3 similarity image

The computation of similarity images contains several steps shown sche-
matically in Figure 8.1. First, we need to define how to compute a correla-
tion among two ensembles of time series. After computing a correlation

8.3 similarity image 189

Similarity image

Ensemble data Set of time series

Run 1 Run 2 Run 3

Distance matrix

()
1

2
3

MDS projection

Figure 8.1: Overview of steps to compute similarity images from spatio-temporal
ensemble data. The distance matrix based on correlations is used for
an embedding, allowing for mapping positions to colors.

matrix between all spatial samples, we can use it to create a 3D embed-
ding of the different spatial samples. Then, we map the embedding to
colors such that the correlations are preserved as distances between the
colors.

8.3.1 Time Series Ensemble Correlation

For computing the correlation among two sets of functions that belong to
different spatial regions of the same ensemble, we only want to consider
correlations among time series that belong to the same simulation run.
One option would be to compute all correlations individually and then
compute the mean among the correlation values. However, this leads to
a significant loss of information. Instead, we propose to concatenate the
individual time series and compute the correlation between the concate-
nated time series that represent the whole ensemble. The concatenated
time series fiv(t) for the spatial sample xi of field v can be computed as

fiv(t) = sivk

(
t−

k−1∑
l=1

Tl

)
for

k−1∑
l=1

Tl < t ⩽
k∑

l=1

Tl ,

where Tk is the number of time steps of the simulation run rk.
These concatenated time series can be used to compute the correlation

between the time series fiv(t) and fjw(t) between two spatial samples xi
and xj of fields v and w, respectively. We choose the Pearson correlation

190 similarity images

coefficient [32], which describes the linear dependency and is the most
common correlation measure. We can compute the Pearson correlation
Civ,jw between time series fiv(t) and fjw(t) as

Civ,jw =

∑
p(fiv(tp) − µiv)(fjw(tp) − µjw)√∑

p(fiv(tp) − µiv)2
√∑

p(fjw(tp) − µjw)2
. (8.1)

Here, µiv and µjw are the mean of the concatenated time series fiv(t)

and fjw(t). When computing the correlation matrix among all spatial
samples of all fields, one would obtain a correlation matrix of size (nM)2.
An alternative is the computation of the correlation matrix Civ,jv for
each field v individually, leading to M individual correlation matrices.
While the first approach leads to consistent color coding among the dif-
ferent fields, the latter approach is computationally significantly cheaper.

8.3.2 3D Embedding

To apply a color coding to the spatial samples, where distances between
colors represent correlations, we need to define a color mapping. We,
therefore, map the spatial samples to a 3D space based on their correla-
tion, as color spaces are also three-dimensional. We compute the distance
matrix div,jw from the correlation matrix Civ,jw as

div,jw =
1−Civ,jw

2
.

This mapping causes strong correlations to result in small distance val-
ues, while anticorrelations lead to large distance values. This is desirable
to fulfill our goal of encoding correlations as distances among colors
even though, in other cases, different mappings might be preferable, see
Chapter 10.

The resulting distance matrix can be used for applying a distance-
preserving 3D embedding. Multi-dimensional scaling (MDS) [373] min-
imizes the stress function and, thus, optimizes for preserving the dis-
tances. We, therefore, choose MDS for a 3D embedding. As a dimension-
ality reduction introduces error if the intrinsic dimensionality is larger
than the dimensionality of the embedding, this method might introduce
projection artifacts. However, the loss of information can be estimated
by investigating the eigenvalues of the computation. Additionally, the
similarity images provide an overview that could be accompanied by a
more detailed analysis, as presented in the following chapters.

8.3 similarity image 191

(a) Color coding. (b) Similarity image.

Figure 8.2: The color coding is defined based on the coordinates in the embedding
(a). The colors are then mapped back to the original spatial domain (b).

8.3.3 Color Mapping

The embedding can be used to map each of the embedded points piv

that represents spatial sample xiv of field v to a color. We choose the CIE
L*A*b* color space as Euclidean distances in the color space correspond
to perceived distances between the colors and, thus, are perceptually
uniform.

To use the range available in the color space as optimal as possible, we
apply a rotation and a scaling to the points piv. For the rotation, we use
a heuristic, for which we place the most distant points on the diagonal
of the cube. Therefore, we rotate the points around a rotation axis that is
perpendicular to the diagonal and the direction vector from one of the
most distant points to the other. The normalized rotation axis r can be
computed as

r =
amax√
3 ∥amax∥

× (1, 1, 1)T ,

where amax denotes the vector pointing from one of the most distant
points to the other one. The corresponding rotation is given as [335]:

piv,rot = r2xg(α) + cosα rxryg(α) − rz sinα rxrzg(α) + ry sinα

ryrxg(α) + rz sinα r2yg(α) + cosα ryrzg(α) − ry sinα

rzrxg(α) − ry sinα rzryg(α) + rx sinα r2zg(α) + cosα

piv

where rx, ry, and rz denote the x, y, and z component of the normalized
rotation axis and α is the angle between amax and the diagonal (1, 1, 1)T

of the cube, g(α) = 1− cosα and the diagonal (1, 1, 1)T of the cube.

192 similarity images

0 04 2 1

1 1 5 3 2 2

(a) Binary partition tree.

1 1 5 3 2 2

0 04 2 1

(b) Watershed hierarchy.

Figure 8.3: The watershed segmentation is created based on an edge-weighted
graph. A circular layout could be easily included by adding additional
edges (gray). Edge weights can be computed as Euclidean distances
where minima (red) and watershed edges (blue) are color-coded. The
pruning line (gray) represents the cut in the watershed hierarchy (b),
leading to a watershed segmentation.

The rotated points are first rescaled with the same scaling factor such
that they lie in the cube [0, 100]3. Afterwards, we translate all points such
that they lie in the range [0, 100]× [−50, 50]× [−50, 50]. These ranges lie
in the CIE L*a*b* color space, even though they do not present the full
ranges of the color space. However, we chose these ranges as they allow
us to preserve the relative distances and still use a wide range of colors,
as shown for a color-coded embedding in Figure 8.2a. Then, the colors
are applied to the image of the spatial region as shown in Figure 8.2b.
The resulting image is referred to as a similarity image. Small perceived
distances between the colors indicate a high correlation between the spa-
tial positions, while large perceived distances indicate anticorrelations.
Note that not all colors of the CIE L*a*b* color space can be shown in
the RGB color space, which might introduce errors when viewing the
images on the screen. However, following the same argument as for the
embedding errors, these relatively small errors are acceptable for the
overview visualization.

8.4 hierarchical segmentation

Regions of homogeneous colors in the similarity image represent regions
of highly correlated temporal behavior. Therefore, applying a segmenta-
tion algorithm allows us to obtain regions of similar behavior that can
be used to compute meaningful averages for a follow-up analysis which,
then, would only depend on the internal variability of the data instead
of on the input resolution of the dataset.

8.4 hierarchical segmentation 193

For larger flexibility in analysis approaches for the segmentation, we
want to apply a hierarchical segmentation which will support the visual
analysis on different levels of detail. Therefore, we choose a watershed
algorithm that creates a hierarchy with homogeneous segments on the
lowest level of detail as described in Section 8.1.1. A graph-based algo-
rithm also supports different geometries, which allows us to segment,
for example, the Earth’s climate data on a spherical domain. The algo-
rithm presented in Section 8.1.1 provides a quasi-linear runtime com-
plexity in the number of pixels, and an efficient implementation is avail-
able [257].

To apply the algorithm, we define an undirected graph G = (V ,E)
with vertices V and edges E from the image as shown schematically in
Figure 8.3a. Each pixel is represented by one vertex, and edges connect
adjacent vertices. To consider more complex geometries, we can insert
additional edges. For example, to model the Earth’s spherical surface,
additional vertices between the pixels on the left and the right side of
the image are inserted.

In the next step, the gradient between two vertices u1 and u2 is com-
puted and assigned as a weight to the edge e = {u1,u2} ∈ E. We propose
two methods for computing the gradient: Using the Euclidean distance
between two color values leads to sharper edges. While this gradient
computation is suitable for images with clear edges, it might lead to
oversegmentation for smooth images. The Sobel filter [317] is a simple
yet standard method for edge detection. This method is based on a gradi-
ent image, where each pixel stores the gradient magnitude. The weight
for edge e = {u1,u2} is computed as the mean of the gradient magni-
tudes assigned to the pixels corresponding to u1 and u2.

We use the similarity image in CIE L*a*b* color space to compute
the segmentation. However, as the 3D embedding was mapped onto
CIE L*a*b* colors by a linear transformation, the gradients of the color
image correspond to those of the original embedding. Note that, in gen-
eral, a computation of the segmentation is also possible by using higher-
dimensional points, but we opted for a segmentation based on the 3D
embeddings for easier interpretability. In this way, the segmentations
can be directly compared to the similarity images.

After creating the graph that represents the image, we can apply the
graph-based watershed algorithm leading to a watershed hierarchy. The
watershed basins can be treated as the lowest level of the hierarchy (see
Figure 8.3b). Thus, they can be either understood as leaves of the tree
representing the hierarchical segmentation (see Chapter 9) or as a seg-
mentation forming homogenous segments and, thus, a kind of superpix-
els for following analysis steps (see Chapter 10).

194 similarity images

16

24

R1

R2

R3

R4

R5

R6 R7

R8 R9

(a) Field v.

16

24

R10

R11

R13 R14

R15

R16

R17 R18

R12

(b) Field w.

Figure 8.4: The artificial dataset contains two fields with a similar structure but
different spatial positions of the individual segments. The function
that was used for creating the time series is shown in each segment
where equal functions are also encoded by color.

8.5 results

In the following, we will discuss some results for creating similarity im-
ages and the corresponding segmentations used in the following two
chapters. First, we define a synthetic dataset to verify our approach and
provide a more intuitive understanding of the meaning. Then, we will
apply our approach to simulation ensemble modeling climate change.

8.5.1 Synthetic Dataset

For creating a synthetic dataset, we divide the spatial domain into dif-
ferent regions and create a time series for each spatial sample as shown
in Figure 8.4. Thus, we obtain two fields, where the field v contains the
same regions as the field w but in different spatial positions as we mirror
the domain in both axes. We also switch the signs between R5 and R11.
For each time series, we create 300 time steps with a temporal resolution
of 0.1. We generate 10 ensemble members by adding random noise with
a uniform distribution between [0, 0.1].

Figure 8.5a shows the similarity images computed for both fields to-
gether. Here, the first three principal directions of the MDS cover 90.6%
of the variability of the data. We can see that the regions R2, R8, R9,
R10, R12 and R16 (see Figure 8.4) show the same color. The color of
R6 and R14 is similar but not identical, as is to be expected for a rela-
tively high correlation. Additionally, the segments R1, R3, R7, R13, R17,
and R18 share the same color as the time series are, by definition, per-
fectly correlated. Segments R4 and R15 are defined to be anticorrelated

8.5 results 195

(a) Combined computation. (b) Separate computation.

Figure 8.5: Computing the MDS for several fields together allows the interpreta-
tion that includes correlations between the different fields (a). If the
similarity images are computed separately, distances between colors
among the different images cannot be interpreted (b).

to these segments and, as expected, are perceived as a visually very
distant color. Figure 8.5b shows the similarity images if both fields are
treated separately and reveals that the colors between the images cannot
be compared because the correlations among the different fields were
not considered, which leads to a different embedding of the point cloud
into the color space.

Comparing the two methods of computing multi-field similarity im-
ages, one can see that only the embedding containing both fields allows
for deriving a conclusion about interactions between the fields. How-
ever, the computation for single fields is significantly faster as this com-
putation only scales linearly with the number of fields compared to the
quadratic scaling of the combined approach. Therefore, the preferable
option for treating multi-field data strongly depends on the use case. If
only a segmentation of the data is needed (see Chapter 10), the compa-
rability between the color coding in both fields does not add additional
value, which is why in this case, treating each field separately would be
preferable.

196 similarity images

(a) Watershed level 0. (b) Watershed level 30. (c) Sobel gradient filter.

Figure 8.6: At the highest level of detail (a), we observe an oversegmentation. At
a lower level of detail (higher watershed level), using the Euclidean
distance leads to sharp edges (b), which is not the case when using
the Sobel filter (c).

(a) Temperature (b) Temperature anomaly

Figure 8.7: Simulation data for the analysis of climate change. b) The heatmap
shows the global spatial variation for temperature. b) When comput-
ing the temperature anomaly, the seasonal changes are removed.

Based on the similarity images, we can then compute a segmentation
of the spatial domain as shown in Figure 8.6. Note that we use the vi-
sual encoding presented in Section 3.5.3. The segmentation of the field
v when using the Euclidean distance for computing edge weights and
a watershed level of 30 can be seen in Figure 8.6b. The segmentation
resembles the domain boundaries. When considering the lowest level
of detail, as shown in Figure 8.6a we see an oversegmentation that is
caused by the noise added to the dataset and was to be expected.

We also compare the segmentation result using the Sobel filter for gra-
dient computation. The result for a watershed level of 15 is shown in Fig-
ure 8.6c. Compared to the segmentation based on Euclidean distances,
the boundaries between the segments are less accurate. From this obser-
vation, we can conclude that Euclidean distances yield better results for
sharp segment boundaries.

8.5 results 197

8.5.2 Global Climate Simulation

To show the practical applicability of similarity images, we apply our
algorithm to simulations of climate change. We analyze the Max Planck
Institute Grand Ensemble (MPI-GE) [223]. The simulation ensemble con-
tains several scenarios based on different assumptions about greenhouse
gas emissions. We will focus on scenario RCP8.5, simulated over the
years 2006-2099. The ensemble contains 100 spatio-temporal ensemble
members with a spatial resolution of 192× 96. In contrast to the previ-
ous application areas, the dataset does not depend on a set of parameters.
Instead, the initial conditions of the individual ensemble members are
varied to cover the uncertainty in climate predictions. The dataset con-
tains multiple fields, including the surface air temperature, near-surface
air temperature, sea level pressure, and precipitation. One example of
a single timestep for the sea surface temperature is visualized in Fig-
ure 8.7a.

Especially the temperature fields are dominated mainly by the sea-
sonal cycle. Therefore, we derived the respective fields’ anomalies by
subtracting the respective fields’ mean monthly values based on histor-
ical data. This procedure is also referred to as studying the anomalies
with respect to the climatological mean. Analyzing the anomalies allows
for investigating climate variability and identifying features of interest
to domain scientists like the El Niño phenomenon. The anomaly for Jan-
uary 2006 in the sea surface temperature is shown in Figure 8.7b.

We compute the similarity images for the MPI-GE dataset. To reduce
computational costs, we compute all similarity images individually. A
suitable approximation algorithm like Landmark MDS [268] or Pivot
MDS [48] could be used for computing joint similarity images as the
distance matrix would be very large.

At first, we study the mean monthly surface temperature (ts) and ob-
tain the image shown in Figure 8.2b. Here, we see a significant difference
in the colors of the northern hemisphere and the southern hemisphere
which can be explained by the seasonal differences. Additionally, one
can clearly identify the continents. In the northern hemisphere, they are
shown in pink, while the oceanic regions are shown in yellow, and in the
southern hemisphere, the land mass is shown in blue while the ocean is
significantly darker.

However, the strong seasonal fluctuations might hide more interesting
features in the climate data. Therefore, we also consider the anomalies
for each field. The similarity images for the surface temperature anomaly
(ts_anomaly) are shown in Figure 8.8a. One clearly visible feature is the
dark green region in the North Atlantic. The unique color points towards

198 similarity images

(a) tsAnomaly. (b) pslAnomaly.

Figure 8.8: The similarity image of the two anomaly fields reveals different spa-
tial scales of variation. They show climate anomalies like the North
Atlantic Worming Hole that remain hidden when analyzing the full
data instead of the anomaly. For better orientation, the coastlines are
overlayed.

a climate anomaly. Indeed, this region is well known to climate scientists
as the so-called North Atlantic Warming Hole. The characteristic region
for the El Niño phenomenon is encoded in a light violet. Additionally,
we observe various Antarctic regions that stand out.

As a second example, we investigate the pressure anomaly. The sim-
ilarity image shown in Figure 8.8b reveals variations on a larger scale.
Additionally, the borders of the continents are significantly less pro-
nounced, and only some of them are visible at all. For this field, the
Arctic and Antarctic region stand out. Between those two regions, one
only observes few different colors which form large connected regions.

The different granularities of the variations also become visible when
observing the corresponding segmentations. Both segmentations shown
in Figure 8.8 were created using the lowest watershed level. Due to the
smaller regional variations, the segments for the pressure anomaly are
significantly larger than those for the temperature anomaly. Working
on the level of segments as superpixels instead of the individual data
points of the original data thus reduces the data’s complexity. Depend-
ing on the field, we can reduce the data from 18.432 spatial samples in
the original resolution to 432 (sea level pressure) to 1075 (precipitation
anomaly) segments. This results in a data reduction to 2.34% for the sea
level pressure and 5.83% for the precipitation anomaly. The values for
all fields can be found in Table A.2 in the appendix.

8.5 results 199

(a) Slice 75. (b) Slice 100.

Figure 8.9: Two slices of the similarity volumes for the 3D blood flow dataset
reveal high correlations among the spatial positions inside the vessel,
encoded as a similar pink color.

Additionally, the analysis complexity depends on the internal struc-
ture of the data instead of the input resolution, which might allow for
a significant reduction of computational costs without losing too much
information. The similarity images and corresponding segmentations of
the remaining fields and their anomalies are presented in Appendix A.2.

When observing the variation of the data covered by the three dimen-
sions used in the similarity images, we see a wide range between the dif-
ferent fields. While for the surface temperature as shown in Figure 8.2b,
85.4% of the variation is covered, the pressure anomaly similarity image
conveys 36.5% and the surface temperature anomaly only 26.7%. The
percentages for the remaining fields are presented in Table A.1 in the ap-
pendix. However, increasing the target dimensionality for the MDS is not
possible as color spaces are three-dimensional. Therefore, we propose to
use the similarity image as an overview visualization and closely link it
with other visualizations that allow for identifying projection artifacts,
as we will explain in the following chapters.

8.5.3 3D Blood Flow Ensemble

To demonstrate the broader applicability of our approach and show a
proof of concept for a 3D dataset, we apply it to the blood flow dynamics
dataset that we also used in Section 4.8.1. Here, we consider that most
of the 3D spatial domain does not belong to the vessel and, thus, does

200 similarity images

3

1

2

(a) Embedding.

2

1

3

(b) Rendering.

Figure 8.10: Only three segments show a distinct color from the others (a). The
3D visualization (b) reveals that two of these segments are located at
the inlet, while the third one is located at the vessel wall.

not contain data of interest for the correlation analysis. Therefore, we
apply a mask to leave out these regions, and for the following analysis,
only include the voxels inside of the vessels leading to 76, 278 spatial
samples included in the analysis. This also shows that we can apply the
approaches in the analysis workflow on data domains of various shapes.

We remove three runs from the dataset containing only 4 timesteps to
create a comparable time domain. We use the first 11 time steps of all the
other runs with a duration of 0.25 s each. In the analysis of the temporal
variation of the ensemble members (see Section 4.8.1), it becomes clear
that most variation appears in the earlier time steps. The similarity im-
age, which could also be considered a similarity volume due to the 3D
spatial domain, is created using PMDS, where we use 1% of the voxels
as sample points.

Some slices of the volume are shown in Figure 8.9. We see that most re-
gions are correlated, showing a similar pink color. Variations are mainly
visible at the borders of the vessel. As the slices only present a subset
of the data, we also compute the segmentation of the spatial domain.
For reducing the number of segments, we choose a watershed level of
150. The resulting 3D segmentation can be embedded in 2D using the
algorithm presented in Chapter 3. For coloring the segments, we choose
the mean color of the corresponding voxels in multi-dimensional space.
The embedding is shown in Figure 8.10a. We see only three segments
that deviate significantly by showing a very dark color, indicating that
the temporal evolution in these regions is not correlated to the other
regions. Two regions share a joint boundary while the third one is sepa-
rated. To better understand the spatial positions, these three regions are

8.6 discussion 201

shown in a rendering in Figure 8.10b. One region (marked as 1) occurs at
the vessel wall after the vessel diameter slightly extends. The two other
regions (marked as 2 and 3) are located at the vessel’s inlet. Here, the
inlet velocity profile is fixed, which might allow for less variation over
time.

8.6 discussion

In this chapter, we presented similarity images to provide an overview
of spatio-temporal ensemble data. Perceived distances between colors in
the images encode correlations between the different spatial regions. The
image can be used as a starting point for an in-depth analysis of the sim-
ulation ensemble. We propose to apply a watershed segmentation. On
its lowest level of detail, the segmented images provide highly correlated
regions that reduce the complexity for future analysis. By computing a
watershed hierarchy, segmentations on different levels of detail can be
determined. These watershed hierarchies allow for an interactive inves-
tigation of the data on different levels of detail. Precomputing the seg-
mentation supports analysis at an interactive rate which we will discuss
in detail in the following chapters.

Note that similarity images can also be computed for datasets of higher
dimensions leading to (multi-dimensional) similarity volumes. However,
these volumes are more complex to visualize but could be shown by us-
ing, for example, slice-based visualizations. The bottleneck when com-
puting similarity images is the 3D embedding. The underlying distance
matrix scales quadratically with the number of data points, which grows
quickly, especially for 3D datasets or datasets with even higher dimen-
sions. This challenge can be addressed using MDS approximation tech-
niques for large data, like Pivot MDS, as we did for the 3D blood flow
data.

While the similarity images provide an overview of correlations be-
tween the different spatial regions and allow for spotting interesting
anomalies, dimensionality reductions might induce projection artifacts.
When observing the percentage of the variability in the data that the first
three dimensions can cover, we find that we lose a significant amount of
information for some fields. Therefore, similarity images do not suffice
for a comprehensive analysis but should be supported by additional vi-
sualizations to avoid misinterpretations due to projection artifacts.

9
U N C E RTA I N T Y- AWA R E H I E R A R C H I C A L
C O R R E L AT I O N A N A LY S I S

Similarity images, as presented in the previous chapter, allow for an over-
view of correlations in a given ensemble. However, they might contain
projection artifacts introduced by the dimensionality reduction to three
dimensions. Additionally, they neither contain more detailed informa-
tion about the uncertainty nor potential time lags between the segments
nor allow for investigating the temporal behavior directly. We propose
an interactive visual analysis approach for an uncertainty-aware hierar-
chical correlation analysis to address these challenges. We use hierarchi-
cal watershed segmentation, which allows an analysis on different levels
of detail. We also include the uncertainty introduced by the ensemble
structure and time lags between the time series in the analysis.

After providing an overview of the analysis tasks and our analysis ap-
proach in Section 9.1, we discuss how to compute correlations on mul-
tiple levels of detail in Section 9.2 and then detail our visual design in
Section 9.3. Section 9.4 will present results from the climate simulations
domain.

The results in this chapter are based on

M. Evers*, K. Huesmann* and L. Linsen, Uncertainty-aware
Visualization of Regional Time Series Correlation in Spatio-
temporal Ensembles, Computer Graphics Forum 40, No. 3: 519-
530 (2021) (* The authors contributed equally.)

As mentioned in the previous chapter, all authors contributed to dis-
cussing ideas, writing, and editing the manuscript. The front end, includ-
ing the visualizations, was mainly implemented by Karim Huesmann,
while I implemented most of the back end, including precomputations.
The results were created by both of us.

203

https://dx.doi.org/10.1111/cgf.14326
https://dx.doi.org/10.1111/cgf.14326
https://dx.doi.org/10.1111/cgf.14326

204 uncertainty-aware hierarchical correlation analysis

9.1 overview

For the analysis in this chapter, we use the similarity images and a hier-
archical correlation as described in Chapter 8 as a starting point. Using
this data, we can analyze the spatio-temporal simulation ensemble with
respect to the following analysis tasks:

T9.1 Analyzing the correlations on multiple levels of detail. It should be
possible to refine the level of detail locally to cover regions of inter-
est in more detail without adding additional complexity to other
regions.

T9.2 Incorporating potential time lags. Time lags between time series
might indicate causalities.

T9.3 Visualizing the uncertainty. The uncertainty originating in the en-
semble structure should also be visually conveyed. Thus, we want
to show the variability over the simulation runs.

T9.4 Visualizing the time series explicitly. Direct visualization of the time
series data of selected samples supports understanding the tempo-
ral evolution.

Based on these tasks, we create an interactive visual analysis system.
As a preprocessing step, we compute multi-level correlations that allow
for adapting the level of detail at interactive rates (see Section 9.2). To
achieve sufficiently fast computation times, we base the following steps
purely on the segments and their hierarchy. Multiple linked views sup-
port the analysis of different facets of the data. A region visualization
(see Section 9.3.1) provides spatial context to the correlation heatmap
(Section 9.3.2). An uncertainty-aware time series visualization (see Sec-
tion 9.3.3) provides direct visualization of the underlying temporal evo-
lution. All views are closely linked by coordinated interactions (see Sec-
tion 9.3.4).

9.2 multi-level correlations

We precompute a multi-level correlation hierarchy for varying the level
of detail on interactive rates (task T9.1). For this step, we start with a hier-
archical watershed segmentation described in Section 8.1.1. The segmen-
tation result can be stored in a tree data structure as shown in Figure 9.1.
Further data can easily enrich this data structure.

Each tree node encodes one segment, while edges connect the segment
to the corresponding parent and child segments. The leaves of the tree

9.2 multi-level correlations 205

Figure 9.1: The hierarchical segmentation can be stored as a tree where each
node corresponds to a segment. Multi-level correlations are computed
among segments belonging to the tree’s different branches.

are formed by the segments at the lowest level of the hierarchy. As these
segments, in the following, are the smallest unit that we work on, the
remainder of the approach does not scale with the resolution of the orig-
inal data but instead with the information contained in the data. Thus,
when increasing the resolution without varying the data itself, the size
of this tree stays constant. In general, it significantly reduces the amount
of data, see Section 8.5.2.

We store aggregated data in our tree data structure to obtain interac-
tive rates. For each segment, we compute the mean of the time series
over each spatial sample. The means are computed for each ensemble
member separately. The mean time series are stored in the correspond-
ing nodes of the tree and can be accessed for in detail-analysis (task T9.4).
On the lowest level of detail, we can assume that the sample points are
sufficiently similar such that the mean of the time series is representa-
tive. However, this is not necessarily the case for higher levels of detail
anymore. To estimate the error introduced by considering means, espe-
cially of larger and more heterogeneous segments, we store the minimal
and maximal pairwise correlation of its sample points for each segment.
This allows for identifying segments with a high internal variation and
enables the users to find projection artifacts that might have led to a
misleading color coding in the similarity image (see also Section 8.5.2).
We use the linearity of the mean for fast computation of the time series
means. Only the means of the leaves need to be computed directly from
the original data, while the means for the segments represented as inter-
nal nodes can be computed as area-weighted means of the mean time
series stored in their children’s nodes.

To store the spatial information, we assign each segment’s spatial sam-
ple points to the tree’s leaves. For determining cutting levels, we store the

206 uncertainty-aware hierarchical correlation analysis

Time

Figure 9.2: Computing correlations for different time lags τ between the time se-
ries allows for finding relations that might hint toward causality in the
data.

altitude of the watershed segmentation as additional information. This
also allows for refining single segments for a more detailed analysis of
selected spatial regions (task T9.1).

For investigating the correlations on different levels of detail, it is also
necessary to compute correlations among segments of different levels of
detail. Here, we compute pairwise correlations for each ensemble mem-
ber. However, to save computational costs as well as reduce the data that
needs to be stored, we limit the computations to pairs of segments that
do not belong to paths of the tree and use the symmetry of the correla-
tion matrix.

Besides finding regions of synchronized behavior, including a time lag
in the analysis is of interest. A time lag corresponds to a temporal offset
between two time series, as shown schematically in Figure 9.2. Time-
lagged correlations among regions hint towards causality among the
corresponding temporal evolutions. The time-shifted cross-correlation
ρij,k(τ) for ensemble member rk, regions i and j and time lag τ can be
computed as

ρij,k(τ) =
E[(sik(t) − µi)(sjk(t+ τ) − µj)]

σiσj
,

where sik(t) and sjk(t) are the mean time series of segment i and j,
µi and µj are their means, and σi and σj are their standard deviations.
E[·] describes the expected value. Note that in this chapter, we perform
a single field analysis and, thus, do not include the index for the field.
Based on a maximum time lag τmax, we compute the correlations for
all τ ∈ {−τmax, . . . , τmax}. As the maximum time lag is very application-
specific, we leave the choice of an accurate value to the users.

9.3 visual design 207

When computing all correlations for a pair of segments, this results in
(2τmax + 1)m correlation values for m ensemble members for each pair
of segments. Depending on the choice of τmax, this might lead to large
amounts of data. To reduce this number, we consider only the strongest
correlation value of the different time lags for each ensemble member
obtaining only m correlation values. For the strongest correlation, we
consider both positive and negative correlations. Thus, we use the maxi-
mum absolute value to determine the strongest correlation and store the
sign to differentiate between strong correlations and strong anticorrela-
tions.

For a global, regional ensemble analysis, the exact value of the correla-
tion is less important than the existence of strong correlations or anticor-
relations. Therefore, we threshold the correlation values while keeping
the sign. Thus, we obtain the values −1 for strong negative correlations,
0 for weak correlations, and 1 for strong positive correlations leading to
a vector of ternary values for each pair of regions. By computing the
average over all ensemble members, we obtain a signed probability of
whether the correlation exceeds the threshold, which covers the uncer-
tainty within the ensemble. In the case of a positive value, it provides the
percentage of ensemble members whose correlation exceeds the thresh-
old. In the case of a negative value, the absolute value provides the per-
centage of runs with correlations below the negative threshold. As we
assume that the ensemble members are relatively similar, it is improba-
ble that strong negative and positive correlations occur in the same pair
of segments. However, if it does occur, we alert the users for further
investigation.

The choice for an optimal threshold value is unclear before the analy-
sis and depends on the data. Therefore, we support multiple threshold
values for which the multi-level correlations can be precomputed. The
user can interactively switch between the different thresholds during
the interactive analysis session. Precomputations for many thresholds re-
quire a large amount of memory, but for most applications, a relatively
small number of thresholds should suffice. Note that up to this point, all
calculations are precomputations carried out before the analysis sessions
and allow for interactive analysis.

9.3 visual design

In the following, we will discuss the design decisions to address the
analysis tasks and explain the coordinated interactions. A screenshot of
the resulting application is shown in Figure 9.3.

208 uncertainty-aware hierarchical correlation analysis

Figure 9.3: The visual analysis tool allows for studying correlations among differ-
ent spatial regions while including time lags between the time series.

9.3.1 Region Visualization

While more abstract visualizations are helpful for deeper insights into
the data, an explicit visualization of the spatial information is important.
Especially in fields like climate research, geographical information is a
key component in interpreting insights about the data. The visualization
of 2D domains can be achieved easily by map-like visualizations. How-
ever, for 3D datasets, the spatial visualization of segmentations is more
challenging because volume visualizations like direct volume rendering
or visualizing the surfaces of the segments might lead to occlusion. An-
other option would be using slice viewers, but they only show a subset
of the data at once and, thus, do not provide a complete overview of the
dataset. When embedding the segmentation presented in Chapter 3, one
obtains this overview but loses the spatial context. Therefore, we pro-
pose to use the map-like visualization of the embedding for an overview
of the structure of the segmentation and link it to a surface rendering in
which selected segments can be shown in 3D to avoid occlusion.

9.3 visual design 209

Figure 9.4: The region visualization shows the different segments. Selected seg-
ments are shown in full saturation, while the others are shown as de-
saturated. Annotated segments are shown with a black dashed bound-
ary. For linking with coordinated views, segments that are hovered
over are highlighted by a pink boundary.

For 2D spatial data, we show segments created based on the user-
defined watershed level in a 2D map. Each segment is colored by the
mean color of the corresponding sample points of the similarity images
to provide the correlation information of the original similarity image
also in the segmentation visualization. Showing the mean color also re-
flects the choice to work on the means of the spatial regions for the fol-
lowing analysis steps. However, this color coding might lead to similar
colors of neighboring segments.

Different alternatives are available to ensure the separation of the seg-
ments. White boundaries between the segments, as used in the origi-
nal approach [99], provide clearly visible separations between the dif-
ferent segments but also require additional screen space. While this vi-
sualization provides a simple layout that can be easily enriched by the
additional encoding of the segment boundaries, it is not immediately
applicable to visualizing an embedding of 3D segmentations (see Chap-
ter 3). For 2D embeddings of 3D segmentations, a boundary between
non-adjacent segments may be necessary if they do not share a joint
boundary in the 3D space. If white boundaries separated the spatial seg-
ments, a different visual encoding would be needed for the segment
separators.

Another option would be shading, as discussed in Chapter 3, that
clearly highlights boundaries between different segments. This visual-
ization also directly generalizes to 3D embeddings as it was originally
designed for this purpose. While both visual encodings have strengths
and weaknesses, we use shading-based visualization to keep the visual

210 uncertainty-aware hierarchical correlation analysis

encoding consistent for different dimensions. An example of the spatial
region visualization is shown in Figure 9.4.

To facilitate the analysis and interpretation of the data, the users can
interactively label segments, which are segments of particular interest.
Then, the labels are used in all visualizations. To highlight these seg-
ments in the region visualization, we draw a black dashed border of the
segment on top of its original visualization.

As we also show the similarity image and the segmentation visualiza-
tion, the users can assess the segmentation quality. Further, it facilitates
the choice of a suitable watershed level. When interactively changing the
watershed level, the map visualization adapts to the different levels of
detail.

The dataset can be analyzed by the visual information-seeking mantra
“Overview first, zoom and filter, then details on demand” [313] because
the continuous level-of-detail hierarchy allows for adaptively refining
segments (task T9.1). Thus, we allow a more global analysis to reduce
the visual load. The level of detail can be modified to select segments, al-
lowing for a direct comparison of segments on different levels of detail.
Interactive rates can be obtained because the correlations are precom-
puted.

9.3.2 Correlation Heatmap

The correlations among the different spatial regions should be inves-
tigated, including time lags (task T9.2) and the uncertainty caused by
the ensemble (task T9.3). Visualizing correlations of spatial regions is
closely related to climate networks which are commonly visualized by
using a node-link diagram on top of a map. However, drawing many
edges on top of a map leads to much visual clutter even without en-
coding additional information like time lags or uncertainty. Instead of
using a node-link diagram that directly contains the spatial information,
we opt for a heatmap that allows for including additional information
without suffering from occlusion, as shown in Figure 9.5. The heatmap
is closely linked to the region visualization described in Section 9.3.1 to
avoid losing the spatial information.

Our visualization is based on a heatmap and shows the matrix of
correlation probabilities whose computation is described in Section 9.2.
Here, we cover the uncertainty (task T9.3) in the ensemble by showing
the percentage of ensemble members that exceeds a certain correlation
threshold. A heatmap scales well with the number of segments, supports
enhancements with additional information, and (with a suitable order-
ing) allows for identifying structures of interest. The heatmap can be

9.3 visual design 211

Figure 9.5: The correlation heatmap shows the percentage of ensemble members
that exceed the threshold (here: 0.8). The small squares in the center
of each heatmap cell encode the time lag. The color labels on the axes
correspond to the segment colors. The pink highlighting of the labels
in the lowest row and the rightmost column encode that the user hov-
ers over the corresponding segment in the region visualization.

linked to the region visualization by applying consistent color coding.
Any assigned labels are also linked between both views. Additionally,
coordinated interactions (see Section 9.3.4) establish a stronger linking
that also supports differentiating between segments of similar color.

In the heatmap, we use color to encode the correlation probability,
which is the percentage of runs that surpasses the negative or positive
threshold. A diverging color map allows for differentiating between pos-
itive and negative correlations, so we use a red-white-blue colormap
where red encodes a high probability for negative correlations and blue
a high probability for positive correlations. The heatmap allows differ-
ent ways of filtering the data. For focusing on strong correlations among
segments, the users can hide rows and columns that do not contain
strong correlations to any other segments, as this reduces the size of
the heatmap. Further size reductions can be obtained by filtering the
segments included in the analysis, as discussed in more detail in Sec-
tion 9.3.4.

The spatial regions that identify the rows and columns of the heatmap
are not ordered. However, the ordering of the matrix significantly influ-
ences the interpretability of the result as a suitable ordering allows for
identifying groups of highly correlated segments. The matrix of correla-
tion probabilities can be interpreted as an adjacency matrix where each
entry corresponds to the strength of the connection between the differ-

212 uncertainty-aware hierarchical correlation analysis

ent segments. Thus, we can apply matrix reordering methods commonly
used to analyze adjacency matrices in network analysis.

Behrisch et al. [29] derived a guideline for choosing reordering algo-
rithms based on the application case. As we aim at cluster identification
to identify groups of correlated segments, we follow their recommenda-
tion to choose hierarchical clustering for this purpose. In this chapter,
we use the SciPy implementation for hierarchical clustering [356]. The
outcome of hierarchical clustering strongly depends on the choice of the
clustering algorithm. We leave the choice of the linkage algorithm to the
user because it strongly depends on the data to analyze. We support the
following algorithms:

• Single linkage (minimal distances between two points)

• Complete linkage (maximal distances between two points)

• Average linkage (unweighted pair-group method for arithmetic av-
erages (UPGMA))

• Centroid linkage (based on the distance of centroids of the clusters)

• Median linkage (average of child centroids instead of calculating
the centroid from the original points)

• Ward’s minimum variance method

The user can interactively switch between the different linkage algo-
rithms during the visual exploration of the correlation probability ma-
trix.

In addition to investigating the correlations, it is interesting to see for
what time lag τ the maximum correlation is observed. The time lag is
included in the heatmap visualization by showing a color-coded square
in each matrix cell where the color of the square represents the time
lag. As the time lag τ can be positive or negative, we again opt for a
diverging color map. However, as these colors are used together with
the color map representing the signed probabilities, we choose a pink
to green color map that is distinguishable from the red to blue color
map used in the same visualization. The time lags can also be used for
filtering. Only regions whose correlations exceed the threshold for the
selected time lag are shown when selecting a single time lag.

9.3.3 Uncertainty-aware Time Series Visualization

To better understand the data, the actual time series should be visualized
(task T9.4). We want to visualize the segment means for each ensemble

9.3 visual design 213

Te
m

p
e
ra

tu
re

 (
K

)

Time (Months)

300

250

0 20 40 60 80 100

Figure 9.6: The uncertainty-aware time series visualization shows the ensemble
median curve (as defined for functional boxplots) together with a band
displaying the range covered by the ensemble. The curves are colored
according to the corresponding segments.

member. To show the uncertainty of the data, we choose a representation
inspired by functional boxplots [328] as shown in Figure 9.6. The median
time series, as defined for functional boxplots, is the time series with the
largest band depth [218] and corresponds to the most central time se-
ries of all ensemble members. Thus, the median represents an actual
ensemble member that is part of the ensemble. In traditional functional
boxplots, the median is surrounded by the 50% central region and the
maximum envelope without outliers, where outliers are drawn explic-
itly. However, as we find the climate ensemble data to be rather noisy,
this would lead to many outliers resulting in a cluttered visualization
(see Section 2.3.5 for a synthetic example). Instead, we surround the me-
dian with bands that spread the entire range. Thus, it covers the whole
variation over the ensemble members, so we also refer to them as 100%
bands.

To visually link the time series visualization to the other views, we
apply a consistent color coding and use the mean segment colors to
encode the time series. Even though the colors of correlated time series
might be similar, this does not impose problems. Instead, encoding the
correlation by the perceived distances between the colors facilitates the
analysis as the different colors for negatively correlated or uncorrelated
time series directly show that there is no correlation.

214 uncertainty-aware hierarchical correlation analysis

9.3.4 Coordinated Interactions

The individual visualizations (see Sections 9.3.1 to 9.3.3) cover differ-
ent facets of the ensemble data. For comprehensive data analysis, these
views should be used together. We achieve this by closely linking the
views. Besides the visual linking by using consistent color coding in all
visualizations, we also link the views using coordinated interactions.

The region visualization provides spatial information for the correla-
tions shown in the heatmap. Hovering in one of the visualizations high-
lights the corresponding segment in the other visualization to link the
segments between both visualizations. The segments in the region visu-
alization are highlighted by showing a pink frame around the segment
as shown in Figure 9.4. When hovering over the segmentation view, the
color label of the corresponding segment in the heatmap is highlighted
by adding a pink shading as shown in Figure 9.5.

Selecting a set of regions to limit the analysis to a smaller amount of
data is also possible. Spatial regions can be selected directly in region vi-
sualization or by brushing in the heatmap. In both views, the unselected
segments are rendered in faint gray, which allows the users to see the
boundaries between the segments for context while also putting the fo-
cus on the selected segments. The time series view shows the time series
of the segments selected in one of the other views. It is also possible to
select specific time lags or correlations. These selections can be made by
clicking on the respective regions in the color map and are immediately
applied to the heatmap view.

The data can be filtered based on a selection with either of the pre-
viously discussed methods. The analysis of the filtered data can be per-
formed in a separate tab, allowing the users to switch back to the pre-
vious level of detail easily. After filtering the data, the same interactions
as for the entire dataset are available. Thus, the data can be analyzed
on various levels of detail while conveniently switching between them.
In views showing filtered data, the segments corresponding to regions
excluded from the analysis are grayed out in the region visualization. In
the heatmap, this data is not shown to create additional space for show-
ing the filtered data in more detail. The more detailed investigation also
includes changing the watershed level for the segmentation of single
segments or the whole filtered set of segments. A top-down analysis ap-
proach is supported by allowing filtering and refinement on different
levels of detail. As each filtering result is shown in a separate tab, our
visualization approach allows quickly returning to higher levels of detail
realized by switching to the respective tab. Thus, this approach provides
provenance information.

9.4 results 215

9.4 results

We will validate our approach by applying it to a synthetic dataset and
comparing our findings to the ground truth. Then, we demonstrate the
effectiveness by analyzing the 2D MPI-GE dataset and discuss the re-
sults with a domain expert. Finally, we show how our approach can be
applied to a 3D blood flow simulation.

9.4.1 Synthetic Dataset

We use the dataset described in Section 8.5.1 to verify our approach. As
we focus on analyzing single fields in this chapter, we only use the field
v.

For the following analysis, we choose a watershed level of 30 to avoid
oversegmentation but instead obtain one segment per region with unique
behavior. Figure 9.5 shows the correlation heatmap for this data. The
green segments, corresponding to R3/R8, R4, and R6 in Figure 8.4a,
show a strong correlation that is larger than the threshold of 0.8. At
the same time, these regions are not correlated to any other region, as
was to be expected by the definition of the data. The correlation be-
tween regions with linear variation over time (R3/R8 and R4) vanishes
if the threshold is increased to 0.95, which aligns with the expectations.
The pink region (R2) is anticorrelated to the blue segments (R1 and R7),
which follows the definition as sin(t), and the multiples thereof are anti-
correlated to − sin(t). The dark brown segment (R5) is correlated to the
blue segments where the time lag is ±15 (depending on the segment),
which corresponds to a shift of approximately ±π/2 and agrees with
the expected shift between sin(t) and cos(t). Overall, the observations
follow the expectations based on the definition of the dataset.

9.4.2 2D Climate Ensemble

To show the applicability to real-world data, we apply our approach to
the MPI-GE dataset (see Section 8.5.2). The results were discussed with
Michael Böttinger from the German Climate Computing Center (DRKZ),
who has many years of experience working with climate data. As we
only focus on single fields in this chapter, we only focus on the mean
monthly surface air temperature and its anomaly.

When computing the similarity images, one obtains the results dis-
cussed in Section 8.5.2. For the hierarchical analysis, we first consider
the temperature and start with a watershed level of 20 that leads to
111 segments as shown in Figure 9.7a. When observing the correlation

216 uncertainty-aware hierarchical correlation analysis

(a) Segmentation. (b) Heatmap.

Figure 9.7: The segmentation at watershed level 20 (a) and the corresponding cor-
relation heatmap with a threshold of 0.9 (b) for the temperature field
of the MPI-GE exhibit various correlated regions.

Figure 9.8: The regions are filtered for being correlated with a time lag of 6
months.

heatmap shown in Figure 9.7b, we observe several correlations among
the different segments. Also, some anticorrelations (red shades) stand
out. To investigate the time lag, we can use the time lag color map and
select a time lag of 6 months corresponding to the seasonal shift between
the northern and southern hemispheres. Thus, we select all segments
that are correlated or anticorrelated with this time lag to any other seg-
ments. The segmentation shown in Figure 9.8 reveals that this applies
to the majority of segments outside the equatorial region, which is very
plausible.

Next, we want to investigate the negative correlations we identified in
Figure 9.7. Therefore, we filter the regions for those that show a negative
correlation to at least one other region resulting in the segmentation and
correlation heatmap shown in Figure 9.9. We immediately see that the
uncertainty of showing a correlation < −0.9 varies because the shades
of red vary. Some regions in East Asia and North Africa are strongly an-

9.4 results 217

(a) Segmentation. (b) Heatmap.

Figure 9.9: The segments shown in Figure 9.7 are filtered for negative correlations.

ticorrelated with regions in Antarctica. The pink segments are positively
correlated to the northernmost Antarctic segment (black) when applying
a time lag of 5 months (pink/green encoding in the centers of the cells).
From this observation, we can deduce that the positive correlation with
a time lag of 5 months is stronger than the anticorrelation without a time
lag.

As in the previous chapter, we also investigate the temperature anom-
aly to avoid the domination of the seasonal cycle. When observing the
segmentation as shown in Figure 9.10 we can see that most segments
share a similar color while few stand out. We start our analysis by se-
lecting the green segment at the left and right border. Its time series is
shown in Figure 9.11a. Besides the general increasing trend attributed
to global warming, we observe a variation at a timescale of three to five
years. This regular increase in temperature is related to the El Niño phe-
nomenon, which is one of the most well-known climate anomalies and
is characterized by temperature variations in this selected region.

The dark purple area in the center, corresponding to the North At-
lantic Ocean, sparked the domain expert’s interest and is, therefore, se-
lected for further analysis. Figure 9.11b shows the corresponding varia-
tion over time. Here, the increase in temperature is significantly smaller
than in other regions, and in some parts, it even seems to decrease. This
phenomenon is known in climate research to occur in this region, also
called a “warming hole”. Probably, this behavior is linked to a change
in ocean circulation [184]. Besides the limited increase in the overall tem-
perature, we observe a substantial increase in the annual fluctuations,
which becomes apparent in the prominent oscillation starting after 30

years.

218 uncertainty-aware hierarchical correlation analysis

Figure 9.10: In the region visualization for the temperature anomaly (watershed
level 20), two interesting regions are marked by a dashed border. The
green segment is characteristic of the El Niño phenomenon, while
the violet region represents the North Atlantic Warming Hole.

9.5 discussion

We presented an interactive visual analysis approach1 for studying hi-
erarchical correlations in spatio-temporal ensemble data. Based on a hi-
erarchical segmentation of the similarity image, correlations in the data
can be analyzed, including the time lag and the uncertainty introduced
by the ensemble structure of the data. Consistent color coding and in-
teractions closely link the coordinated views. The approach was verified
based on synthetic data and proved helpful in investigating correlations
in climate ensembles.

The domain expert rated our tool as helpful in finding climate phe-
nomena. He linked some patterns immediately to well-known climate
anomalies but also saw the potential to investigate new patterns and
phenomena. He pointed out that including typical climate research at-
tributes would be helpful for a more detailed analysis.

The approach only depends on two parameters which are the maxi-
mum time lag and the correlation threshold. As both parameters are very
application specific, we leave their choice to the users. However, domain
knowledge makes these parameters simple to define, and no parameter
fine-tuning is required.

1 https://github.com/marinaevers/regional-correlations

https://github.com/marinaevers/regional-correlations

9.5 discussion 219

(a) El Niño.

(b) North Atlantic Warming Hole.

Figure 9.11: The time series visualization shows the temporal evolution and its
ensemble variation of the segments marked in Figure 9.10.

The analysis presented in this chapter scales quadratically with the
number of segments because we compute pairwise correlations. How-
ever, if the number of segments is very large, but a high level of detail
is not required, it is also possible to prune the lowest levels of the hier-
archical segmentation and only perform the analysis on a lower level of
detail. The number of segments in the datasets we used was relatively
small, allowing for analysis at interactive rates without further simplifi-
cations.

In this chapter, we only work on single field data. However, simulation
ensembles like the MPI-GE dataset commonly contain multiple fields.
The correlation heatmap and the time series visualizations can be easily
generalized for a multi-field analysis. While the spatial information can
be visualized with several juxtaposed region visualizations, the limited
screen space limits the scaling of the analysis. Therefore, in the following

220 uncertainty-aware hierarchical correlation analysis

chapter, we will present an alternative workflow that emphasizes the
correlation analysis among multiple fields.

10
I N T E R A C T I V E C O R R E L AT I O N A N A LY S I S I N
M U LT I - F I E L D C L I M AT E E N S E M B L E S

The individual analysis of single fields of simulation ensembles, as pre-
sented in Chapter 9, allows for investigating various phenomena. How-
ever, a comprehensive analysis of multi-field ensemble data requires
the joint analysis of multiple fields. The different fields can influence
each other and are often closely related. For example, the El Niño phe-
nomenon is a well-known climate anomaly that can be identified by in-
creased sea surface temperature in the eastern and central Pacific Ocean
during the winter. However, this temperature anomaly is also known
to influence several other climate variables, like the precipitation in var-
ious regions of the world. Such interactions can only be investigated
when considering multiple fields together.

In this chapter, we propose a visual analysis approach for analyzing
the correlation among spatial regions between different fields of ensem-
ble data. Our interactive visual approach supports the users in identify-
ing regions of correlated temporal behavior without the need to choose
a reference point. An embedding is created by using the correlations
among spatial regions as distances. Users can then interactively select
clusters that represent groups of spatial regions with correlated tempo-
ral behavior. The properties of the underlying time series can be investi-
gated in more detail, where we include a geographical map for spatial
context, a heatmap showing the correlations and the spread over the
ensemble, a direct visualization of the time series data, and a spectral
analysis. The utility of this approach is shown by analyzing the MPI-GE
dataset with different fields.

We will first describe our workflow in Section 10.1 and discuss the
necessary precomputations in Section 10.2. Then, we discuss our design
choices for the different visual encodings (see Section 10.3). We verify
our approach by applying it to a synthetic dataset with known ground
truth (see Section 10.4) and show its usefulness by presenting two appli-
cation use cases from the field of climate ensemble analysis 10.5.

221

222 interactive correlation analysis in multi-field climate ensembles

Preprocessing Interactive Visual Analysis

Segmentation

...

Aggregated
Correlation Matrix

...

Member-wise
Correlation Matrices

O
v
e
rv

ie
w

D
e
ta

il
V

is
u
a
liz

a
ti

o
n
s

Embedding Map

Heatmap Time Series
Selections

Fourier
Transform

Figure 10.1: The analysis process builds on segmenting the similarity images used
to create correlation matrices. In an interactive visual analysis, these
correlations can be investigated on different levels of detail.

The results of this chapter are published as

M. Evers, M. Böttinger and L. Linsen, Interactive Visual Anal-
ysis of Regional Time Series Correlation in Multi-field Cli-
mate Ensembles, Workshop on Visualisation in Environmental
Sciences (EnvirVis), 69-76 (2023)

All authors contributed to discussing ideas, writing, and editing the
manuscript. I implemented the approach and created the results with
Michael Böttinger, who provided helpful feedback from the domain ex-
perts’ perspective.

10.1 workflow

The visual analysis workflow for analyzing correlations between mul-
tiple fields in spatio-temporal simulation ensembles is shown in Fig-
ure 10.1. It starts with segmentations of similarity images as discussed
in Chapter 8. Here, we use only the lowest level of detail to obtain ho-
mogeneous regions where the temporal evolution of the field is highly
correlated but still reduce the amount of data included in the analysis.
Based on these segmentations, we can compute correlation matrices as
detailed in Section 10.2. A web-based visual analysis tool allows for in-
vestigating these correlation matrices at interactive rates.

The analysis process starts with a 2D embedding which is explained
in more detail in Section 10.3.1. Each point in the embedding represents
a segment in a single field, and clusters of points represent highly cor-
related segments. The embedding is linked to a map view to provide
spatial information of the corresponding segments (see Section 10.3.2),
where the outlines of segments that can be selected in the embedding

https://doi.org/10.2312/envirvis.20231108
https://doi.org/10.2312/envirvis.20231108
https://doi.org/10.2312/envirvis.20231108

10.2 preprocessing 223

view are drawn on top of a geographical map which provides spatial
context. The correlations among the spatial segments are also explicitly
shown in a heatmap visualization of the correlation matrix to study them
in more detail, identify projection artifacts and study the variation over
the ensemble. We discuss the visual design of the heatmap in more de-
tail in Section 10.3.3. For analyzing the time series directly, we provide
a similar visualization as discussed in Section 9.3.3. However, as we fo-
cus on multi-field correlation analysis in this chapter, we show the time
series of multiple fields together, allowing for a better understanding of
correlations between different fields. For this purpose, we show an in-
dividual y-axis for each field that allows for reading off the individual
values. As the number of segments in the multi-field analysis is signif-
icantly higher than in the single-field analysis, a color coding based on
the mean color of a similarity image would be overwhelming. Therefore,
we change the color coding to represent the field which provides con-
sistency in this analysis tool and allows for differentiating the various
fields. For investigating periodicities in climate ensembles, we include
a Fourier analysis as described in Section 10.3.4. All visualizations are
linked by consistently using the fields for color coding. Further, linking
is provided by brushing interactions that allow for differentiating seg-
ments in the same field, which would be assigned the same color.

10.2 preprocessing

As a starting point for this analysis, we use the similarity images and
correlations discussed in Chapter 8. For multi-field simulation ensem-
bles, the similarity images can be computed jointly or separately. While
a joint computation would provide related colors, the colors will not be
used in the later stages of this approach. Therefore, we use separate com-
putations of the similarity images to reduce the computational cost and
increase the accuracy of the segmentation. A joint similarity image com-
putation would lead to a more complex dataset as a significantly larger
amount of data would be included. This would also lead to a larger loss
of information because the target dimensionality remains 3D.

We use only the highest level of detail of the hierarchical watershed
segmentation presented in Section 8.1.1. Thus, the resulting segmenta-
tion contains only segments of highly correlated data points, which we
could assume to be homogeneous such that a meaningful aggregation
of the time series is possible. We compute the mean time series of all
spatial samples for each segment and ensemble member, leading to n

time series per segment for n ensemble members. In the following steps
of the analysis approach presented in this chapter, we will only work

224 interactive correlation analysis in multi-field climate ensembles

on the level of segments and their corresponding means. This dramat-
ically reduces the data size (see Section 8.5.2). Similar to the approach
presented in Chapter 9, the number of time series included in the anal-
ysis only depends on the complexity of the data but not on the spatial
resolution.

We compute two correlation matrices to support correlation analysis
on different levels of detail. For a joint analysis of multiple fields, we use
the segments of all fields together to compute the correlation matrices.
At first, we compute an aggregated correlation matrix that contains the
pairwise correlations between segments for the whole ensemble. Here,
we compute the correlations between the concatenated time series de-
scribed in Equation 8.1. Note that no normalizations are necessary to in-
clude different fields because we are computing correlation values that
analyze the trends instead of the exact values. The resulting correlation
matrix will be mapped to a distance matrix, used for embedding, and
shown directly in the heatmap visualization.

We also compute a member-wise correlation matrix to cover the vari-
ability over the ensemble. For this one, we compute the pairwise corre-
lations between the segment means for each ensemble member individ-
ually, leading to n correlation values for each segment. This matrix will
show the distribution of the correlation values in the heatmap.

10.3 visual design

In this section, we will discuss the design decisions for the visual analy-
sis tool. A screenshot of the tool’s user interface is shown in Figure 10.2.

10.3.1 UMAP Embedding

We start the analysis process with a 2D embedding of the segments
where each segment of each field is represented by a point. For comput-
ing an embedding as shown in Figure 10.2, we choose the uniform mani-
fold approximation and projection (UMAP) [228]. UMAP preserves clus-
ters, which is our primary goal. Compared to other standard techniques
like t-distributed stochastic neighbor embedding (t-SNE) [348], UMAP
tends to better preserve the global structure of the multi-dimensional
data.

For computing the embedding, we use the aggregated correlation ma-
trix computed based on the ensemble-aggregated time series, which con-
tains a single correlation value for each segment. Analogous to the map-
ping for the similarity images described in Section 8.3, we map the cor-
relation to distances in the range of [0, 1] where 1 corresponds to highly

10.3 visual design 225

b) Mapa) Embedding

c) Time Series Visualization d) Correlation Heatmap

Figure 10.2: The visual analysis tool for multi-field simulation ensembles enables
an analysis of correlations between regions of multiple fields. A
UMAP embedding (a) of the segments allows for cluster identifica-
tion and selections where selected segments are drawn on a map for
spatial context (b). Selected time series can be shown as a graph over
time (c), while the correlations and the distribution of correlations
over the ensemble are shown in a heatmap (d).

correlated segments and 0 to anticorrelated segments. However, depend-
ing on the use case, showing strongly anticorrelated segments close to-
gether can be desirable as they are also strongly related. Therefore, we al-
low the user to switch to an alternative distance mapping, where strong
anticorrelations are also mapped to 1, and uncorrelated segments (corre-
lation of 0) are described by a distance of 0. For this option, the distance
between segments i and j can be computed as

div,jw = 1− |Civ,jw| , (10.1)

where Civ,jw is the correlation between segment i of field v and segment
j of field w.

Based on the resulting distance matrix, we compute an embedding
containing the structure of the whole dataset, including various fields. To
distinguish to which field the segment corresponding to an embedded
point belongs, we color code the fields.

However, the resulting UMAP embedding depends on a density pa-
rameter and the number of neighbors considered for each point. As the
optimal choices of these parameters are unclear, we allow the users to
vary these parameters during the analysis process. Thus, it is also pos-

226 interactive correlation analysis in multi-field climate ensembles

sible to find different features in the data by investigating embeddings
created for varying parameter settings. For the results presented in this
thesis, we considered a minimum distance of 0.1 and 500 nearest neigh-
bors for a more global overview.

If many fields are investigated at once, the scatterplot visualization of
the embedding can quickly become cluttered. Therefore, the users can
hide specific fields in the embedding that are occluding interesting struc-
tures in other fields. Hiding the data points in the embedding does not
affect the other visualizations. If a field should be generally excluded
from the analysis, this can also be done globally, influencing all visual-
izations.

Brushing in the scatterplot allows for selecting groups of points. The
segments corresponding to these points can be used in the other visual-
izations for a more in-depth analysis. The selected points are highlighted
visually by decreasing the saturation of the other points. To facilitate the
analysis process, it is also possible to interactively label groups of points.
Thus, the user can add, for example, notes about the geographical posi-
tion to the embedding.

10.3.2 Map View

While the UMAP embedding provides an overview of the correlations
among the different segments, it does not encode the spatial positions of
the segments encoded by each point. Therefore, we link the embedding
to a map view that provides the spatial information as shown in Fig-
ure 10.2b. Each segment corresponding to user-selected points is drawn
as an outline colored according to the field. Using outlines instead of
areas allows for drawing segments of several fields together, even if
they overlap. Geographic context, for example, for analyzing climate
data, can be provided by drawing the segments on top of a world map.
Here, we choose to show the outlines of the continent. Depending on
the dataset, the context can be easily exchanged. Updating the segments
when changing the selection leads to a direct connection between the
embedded points and the segment’s spatial positions.

Investigating the correlations among segments in certain spatial re-
gions is also of interest. For this purpose, the lasso selection in the map
view allows defining a spatial region in which all segments should be
selected. Here, we define a segment as belonging to the selected region if
it at least partially overlaps with the region drawn by the lasso selection.
When selecting a region in the map view, the corresponding points are
marked as selected in the embedding. This allows for investigating the

10.3 visual design 227

Correlation
1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

(a) Heatmap.

prAnomaly pr tsAnomaly pslprRelativeAnomaly tasAnomaly pslAnomaly

(b) Map view.

Figure 10.3: The heatmap (a) shows correlations between the time series of se-
lected segments. For spatial context, the segments are also shown in
the map (b). The pressure fields (psl and pslAnomaly) are anticorre-
lated to the temperature fields (tsAnomaly and tasAnomaly) and the
precipitation fields (pr, prAnomaly, and prRelativeAnomaly). Over-
all, the correlation between the different temperature fields is higher
than between the segments of the other fields.

correlation structure in the selected region but also investigating it in the
context of correlation to unselected points that are shown as desaturated.

10.3.3 Heatmap

A heatmap allows for visualizing the correlations directly based on a
color coding as shown in Figure 10.3a. While the correlations are also
encoded as distances in the embedding described in Section 10.3.1, a
dimensionality reduction might introduce projection artifacts. The ex-
plicit encoding in a heatmap, thus, avoids misinterpretations while also
investigating the correlation values in more detail. In the heatmap, we

228 interactive correlation analysis in multi-field climate ensembles

Correlation

-1

1

0

Figure 10.4: Hovering over the heatmap highlights the corresponding segments in
the map view by filling the areas with a semi-transparent gray color.

color-code the aggregated correlation values, which cover the correlation
over the whole ensemble. As a color map, we use a diverging blue-white-
red color map such that blue encodes anticorrelations and red encodes
correlations.

The ordering of the heatmap’s rows and columns significantly in-
fluences the interpretability and the ability to analyze groups of cor-
related segments [29]. Thus, we apply a matrix reordering similar to
Chapter 9.3.2. We also use hierarchical clustering. For the results pre-
sented in this work, we used Ward’s minimum variance method [365],
which we found to yield good results. In the resulting matrix, similar
rows and columns are grouped closely together, which results in blocks
of highly correlated or anticorrelated segments, as can be seen in Fig-
ure 10.3a. We label the rows and columns of the matrix by color-coding
the fields. This links to other visualizations using the same color cod-
ing (see Figure 10.3b). Additionally, it scales well with the number of
segments shown in the heatmap, and it allows for easily deducing the
fields for which the time series are correlated or anticorrelated. To ob-
tain more accurate information about the spatial locations, we link the

10.3 visual design 229

heatmap again to the map view, analogous to Chapter 9. However, as we
use outlines here to show the segments, we cannot use the outlines to en-
code which segment is hovered over. Instead, we use the areas, filling the
corresponding segments with a semi-transparent gray color as depicted
in Figure 10.4. The reduced opacity allows for keeping the underlying
map and potential segments belonging to other fields visible.

The color coding of the correlation values covers aggregated correla-
tions over the whole ensemble. To encode the spread of the correlation
values over the ensemble members, we enrich the heatmap by show-
ing the distribution of the correlation values. This encoding enables the
users to determine whether the ensemble correlation value is representa-
tive and how much the correlations for the different ensemble members
deviate. For this purpose, we use the second precomputed correlation
matrix, which contains n correlation values per segment pair for n en-
semble members. We apply a kernel density estimate for smoothing the
distribution, where we use the Epanechnikow kernel [96], which mini-
mizes the mean square error and is a standard approach for this purpose.
The resulting distribution is shown as a graph overlay to the color coding
for each matrix cell, see Figure 10.4.

If huge matrices are visualized, the distribution graphs might provide
too much overlap and hide the color coding. To address this issue, we
allow the users to interactively hide the distributions depending on their
analysis goals and the number of segments included in the heatmap vi-
sualization. Another option would be to apply the approach for respon-
sive matrix cells [159] which allows for showing detailed visualizations
inside of matrix cells on demand. However, as we would either show
the same encoding in all cells or none of them, responsive matrix cells
would require too much interaction. Hiding the distributions, reordering
the matrix, and using colors for labeling the rows and columns provides
a good scaling with the number of segments, as seen for a larger matrix
in Figure 10.3.

10.3.4 Fourier Analysis

Besides showing the time series in a line chart as described in Sec-
tion 9.3.3, studying the frequency spectrum of the time series is also
interesting. Especially in the field of climate research, many phenomena
are periodic. Besides obviously periodic events like annual fluctuations,
climate anomalies such as the El Niño/Southern Oscillation (ENSO) phe-
nomenon reappear in certain intervals. Thus, the correlation between
segments is often closely linked to the (quasi-)periodic behavior. How-
ever, these events are not always perfectly periodic, and the frequencies

230 interactive correlation analysis in multi-field climate ensembles

1/year

Fo
u
ri

e
r

tr
a
n
sf

o
rm

3.8 years

3.1 years
2.8 years

8 years
1 year

Figure 10.5: The Fourier spectra of the selected segments for the temperature
anomaly shows several peaks of different size. While seasonal fluc-
tuations cause the narrow peak at a frequency of 1/year, the peaks
between 0.2/year and 0.4/year might be related to the El Niño phe-
nomenon. Besides the peaks in the mean spectra, there is a substan-
tial variation over the ensemble, as indicated by the bands.

might vary over time, for example, due to climate change. We include
a Fourier analysis in our approach to study the frequencies and their
variations. The users can select time-intervals in the time-series visual-
ization for which the Fourier transform is computed. Thus, spectra for
different time intervals can be compared. Jänicke et al. [166] propose
to use wavelet power spectra for similar purposes. While their method
facilitates the investigation of temporal evolution, it does not support
showing the spectra of several regions in the same graph, which is es-
sential for our goal of studying relations between different segments of
potentially different fields.

We remove the linear trend before computing the Fourier transform
to avoid global warming dominating the Fourier spectrum. Different
options for a Fourier analysis of an ensemble of time series exist. The
easiest method would be computing the Fourier spectrum of the mean
time series. However, this could lead to losing many interesting fea-
tures as different frequencies are averaged out. Instead, we compute the
Fourier transform of each ensemble member individually and compute
the mean Fourier spectrum to reduce noise. To still cover the variability
of the ensemble, we surround the mean curve by a band ranging from
the minimum to the maximum value as shown in Figure 10.5.

We normalize the Fourier spectra to the [0, 1] range because we are
only interested in the frequency. Additionally, the normalization facili-

10.4 synthetic dataset 231

v

w

Figure 10.6: The embedding of the synthetic dataset shows distinct clusters for
the different functions used. Here, the built-in annotation tool was
used for adding labels to the different groups.

tates the comparative analysis of frequencies in Fourier spectra of differ-
ent fields. The graph visualization shows the mean Fourier spectra with
the corresponding ranges for all selected segments. For consistency, we
color code the spectra according to the field that they belong to.

10.4 synthetic dataset

We verify our approach by analyzing the synthetic dataset presented
in Section 8.5.1. We start with the UMAP embedding of the different
segments shown in Figure 10.6. Here, we can see clusters that belong
to the different functions used for creating the dataset. We can label the
different groups for a better overview. Next, we investigate the cluster ac-
cording to the two different but highly correlated sine functions in more
detail. The analysis results are presented in Figure 10.7. When selecting
the cluster, we observe that the spatial regions agree with our definition.
Additionally, the time series visualization reveals that the selected spatial
segments contain two different functions, while the heatmap shows that
they are strongly correlated. When selecting a time interval and comput-
ing the Fourier transform, we obtain the result shown in Figure 10.7d.
In this view, we cannot distinguish between segments corresponding to
sin(t) and those corresponding to 2 sin(t). This behavior is caused by the
normalization of the Fourier spectra. However, as we are only interested
in the frequency spectrum, it correctly reveals identical frequencies in
both functions. The spectra contain one very prominent peak at 0.017
per year, which agrees with the frequency used to create the data.

To further verify the heatmap visualization, we select a subset of points
from the three clusters shown in Figure 10.6 in the right. Thus, we obtain

232 interactive correlation analysis in multi-field climate ensembles

v w

(a) Map view.

f1 f2

2

0

-2

2

0

-2

2000 2100 2200 2300

(b) Time series.
Correlation

1

0

-1

(c) Heatmap.
Fo

u
ri

e
r

tr
a
n
sf

o
rm

1/year
0 0.2 0.4

0

1

(d) Fourier.

Figure 10.7: The results for the synthetic dataset agree with the definition pro-
vided in Section 8.5.1. Here, the cluster labeled with sin in Figure 10.6
is selected. The map view allows for verifying that each cluster be-
longs to the correct segment (a). The time series visualization shows
the two different sine functions (b), while the heatmap shows a strong
correlation for the selected segments (c). Analyzing the Fourier spec-
trum of the full-time span (d) reveals a dominant peak corresponding
to the sine frequency.

Correlation
1

0

-1

quadratic linear-sin

q
u
a
d
ra
ti
c

lin
e
a
r

-s
in

Figure 10.8: The heatmap shows strong correlations inside the clusters. While the
linear and the quadratic segments are positively correlated, the peri-
odic time series are neither correlated to the linear nor the quadratic
ones.

10.5 climate ensemble analysis 233

(a) Map view.

prAnomaly tsAnomaly pslAnomaly

(b) Embedding.

Figure 10.9: When selecting the region around Iceland and the Azores (a), the
points corresponding to the different segments are highlighted in em-
bedding (b).

the heatmap shown in Figure 10.8, where we added labels according to
the clusters. As expected, the correlations inside the clusters are very
high. We observe a high positive correlation between the segments with
a quadratic mean time series and a linear one, while we see no correla-
tion between these segments and those with a sine as a mean time series.
When observing the distributions of the correlations of the ensemble
members, we observe very narrow distributions, which agree with the
definition of the dataset. As the ensemble members only vary by a small
noise, we expect little variation in the correlation values.

10.5 climate ensemble analysis

To show the usability of our approach, we analyze the MPI-GE dataset
described in Section 8.5.2. We present two use cases where we analyze
well-known climate anomalies in our data, and after that, we discuss the
feedback provided by the domain expert.

10.5.1 North-Atlantic Oscillation

The North-Atlantic Oscillation (NAO) is one of the dominating climate
patterns in the Northern Hemisphere [162]. The oscillation can be char-
acterized by fluctuations of the normalized pressure difference between
the Icelandic Low and the Azores High, which is most prominent in
winter. As the pressure difference influences westerly winds and storm
tracks in the North Atlantic, the NAO directly influences many aspects
of life in Europe, including agricultural harvest and energy supply and
demand. While the pattern itself has been known for a very long time,
there a still some unsolved questions, for example, regarding the pre-
dictability of the oscillation [162].

234 interactive correlation analysis in multi-field climate ensembles

As the NAO is characterized by high air pressure in the Azores region
and low pressure in Iceland, but we also want to investigate the relations
to other fields, we include the pressure anomaly (pslAnomaly), the sur-
face temperature anomaly (tsAnomaly), and the precipitation anomaly
(prAnomaly). As we expect an anticorrelation between the pressure over
the Azores and Iceland, we compute the UMAP projection using the
absolute value of the correlations as described in Equation 10.1. Thus,
we expect points representing highly correlated as well as anticorrelated
segments to be located close together.

To analyze this phenomenon, we start by selecting the spatial regions
around the Icelandic Low and the Acores High in the map view as
shown in Figure 10.9a. Based on this, we can identify the locations of
the corresponding segments in the embedding (see Figure 10.9b). Con-
sidering the highlighted points from the map selections, we select a
set of points belonging to the pressure anomaly (pslAnomaly) and pre-
cipitation anomaly (prAnomaly) fields in this region, as shown in Fig-
ure 10.10a. In the map view, we verify that the selected segments for
the pressure and precipitation anomalies are located around the Azores
region and Iceland, while we also selected some additional segments.
The heatmap in Figure 10.10c reveals a strong anticorrelation between
the Azores High and the Icelandic Low. The distributions shown in the
heatmap cells reveal little variation over the ensemble. When considering
the precipitation anomaly fields, we can identify a correlation between
the pressure anomaly in the region of the Icelandic Low to the precipi-
tation anomaly in Southern Europe, while it is anticorrelated to the pre-
cipitation anomaly in Northern Europe. For the pressure anomaly in the
region of the Azores High, we instead observe a strong anticorrelation
to the precipitation anomaly in Southern Europe and a weaker, positive
correlation to the precipitation anomaly in Northern Europe. Thus, our
analysis approach does not only support finding the anticorrelation in
the pressure as usually used as an indicator of the NAO but also studies
its influence on other fields.

For analyzing the time series frequencies, we select four segments to
reduce the clutter in the Fourier view. The resulting Fourier transforms
are shown in Figure 10.11. In both fields, we see two dominant peaks.
The first one, at a frequency of 1/year, indicates the seasonal cycle. As
we removed the seasonal variations based on historical data, these clear
yearly variations indicate that the strength of the seasonal changes in-
creased compared to the historical data. The second peak indicates repe-
titions twice a year, which can also be attributed to seasonal fluctuations.

10.5 climate ensemble analysis 235

prAnomaly

tsAnomaly

pslAnomaly

(a) Embedding.

(b) Map view.
Correlation

Azores HighIcelandic Low South Europe
-1

1

0

Azores High

Icelandic Low

South Europe

(c) Heatmap.

Figure 10.10: We select a set of points belonging to the pressure and precipitation
anomaly (a). The segments belonging to these points are located
northwest of Europe (b). The heatmap reveals correlations among
the Icelandic Low and the Azores High and correlations and anti-
correlations to the precipitation anomaly over Europe (c).

236 interactive correlation analysis in multi-field climate ensembles

1/year

Fo
u
ri

e
r

tr
a
n
sf

o
rm

prAnomaly pslAnomaly

0 1 2 3 4 5
0

1

2

Figure 10.11: The Fourier transform of the segments shown on the map inlay re-
veals dominant peaks at frequencies of 1/year and 2/year for the
pressure and precipitation anomalies. Besides these clear observa-
tions in the ensemble means, we see a wide spread of the ensemble.

(a) Map view.

prRelativeAnomaly tsAnomalypslAnomaly

(b) Embedding.

Figure 10.12: To investigate the El Niño phenomenon, we select the characteristic
region in the map (a). The corresponding segments are shown with
full saturation in the embedding (b), which allows for a selection to
find correlated segments.

10.5.2 El Niño/Southern Oscillation

Next, we aim to analyze the El Niño phenomenon and its long-range
interactions. Similar to the previous use case, we use Equation 10.1 to
place correlated and anticorrelated points close together in the embed-
ding. We start with a selection in the map view where we select a region
west of South America as shown in Figure 10.12a. The positions of the
points representing the selected segments are shown in Figure 10.12b. As
the El Niño phenomenon is characterized by an anomaly in the temper-
ature, we select a set of points around the temperature anomaly values
and limit the selected fields. The selection is shown in Figure 10.13. In
the map, we can see that the corresponding segments exhibit long-range
correlations and anticorrelations. In the context of climate research, these

10.5 climate ensemble analysis 237

tsAnomaly
prRelativeAnomaly

pslAnomaly

(a) Embedding.

(b) Map view.
Correlation

-1

1

0

(c) Heatmap.

Figure 10.13: The selection of points in the center of the embedding (a) mostly
belongs to the El Niño region west of South America (b), but some
segments are also located in eastern Australia and Southern Africa.
The heatmap (c) shows that the temperature anomaly segments are
positively correlated with each other but negatively correlated to the
precipitation anomaly.

238 interactive correlation analysis in multi-field climate ensembles

long-range relationships are also referred to as teleconnections. When
observing the map, we see that most segments are located west of South
America. This region is known to be closely linked to the El Niño/South-
ern Oscillation (ENSO) phenomenon, which is the strongest interannual
climate variability [202]. This phenomenon can be identified by a posi-
tive sea surface temperature anomaly during winter in the central and
east Pacific. This anomaly occurs every few years and strongly influences
the weather worldwide.

In Figure 10.13b, we can see that some of the selected temperature
anomaly segments are located in eastern Australia or the north of South
America. The segments belonging to the precipitation anomaly field are
in Southern Africa. The heatmap (see Figure 10.13c) reveals a positive
correlation among the different segments belonging to the temperature
anomaly. We also observe an anticorrelation to precipitation anomaly
in Southern Africa. Even though the anticorrelation is relatively weak,
it is considered relevant as we observe different fields. According to
the domain expert, the correlations among different fields are generally
lower. These correlations are in agreement with the IPCC report [61].

As El Niño occurs in approximately regular intervals, it is of interest
to investigate the Fourier transform. The spectrum for the whole time
span is shown in Figure 10.5. The spectrum is dominated by a peak with
a frequency of 0.12/year. As this corresponds to a period of 8 years, it
is not the common period for the El Niño phenomenon. We cannot yet
explain the exact reason for this dominating peak. Another prominent
peak occurs at a frequency of 1/year. This peak corresponds to seasonal
fluctuations. Several smaller peaks occur for period lengths typical for
the El Niño phenomenon.

To study variations over time, we first investigate the Fourier spectrum
for the years 2006-2035, shown in Figure 10.14a. Besides the dominant
peak for small frequencies, we see a smaller peak corresponding to a pe-
riod length of 3.2 years which can be related to El Niño. When observing
the Fourier spectrum for 2070-2100, we immediately notice that the peak
at a frequency of 1/year becomes significantly more dominant. This can
be explained by increased seasonal changes related to global warming.
Additionally, we observe that the small peak now corresponds to a pe-
riod length of 2.6 years. Relating this peak to the one with a period
length of 3.2 years for the earlier time interval indicates a shortening of
the period length for the El Niño phenomenon. This behavior has been
described before [202] and is considered linked to climate change. How-
ever, this peak is not very dominant, and in general, we observe a large
spread of the ensemble variation around the ensemble means. Therefore,

10.5 climate ensemble analysis 239

0 1 2
0

1

2

(a) 2006-2035

0 1 2
0

1

2

3

(b) 2070-2100

Figure 10.14: Comparing the Fourier transform for different time intervals allows
for identifying variations in the frequency spectra over time. For the
temperature anomaly in the El Niño region, we identify peaks that
indicate a shortening of the periods from 3.2 years (a) to 2.6 years
(b). The strong peak at a frequency of 1/year indicates a change in
the seasonal variations.

it is unclear if this observation is present in all ensemble members and
requires further investigation.

10.5.3 Domain Expert Feedback

All the previously discussed analysis use cases were created in close col-
laboration and discussion with Michael Böttinger from German Climate
Computing Center (DKRZ). The tool was developed in close collabora-
tion with regular feedback meetings. After the first version of the tool
was provided, he worked with the tool independently to generate the
results presented in the previous subsections. This also led to several
further improvements, including spectral analysis and annotations.

During the analysis process, he highlighted the possibility of inves-
tigating the data interactively. In the analysis process, the UMAP pro-
jection helped investigate correlated regions which can be compared to
well-known climate phenomena. The additional option to treat anticor-

240 interactive correlation analysis in multi-field climate ensembles

relations as small distances further facilitated the analysis process when
related data, in general, should be investigated.

Despite reproducing existing phenomena, the visual analysis approach
also provided insights into the data that still needs to be fully explained.
One remaining open question is the appearance of the prominent, broad
peak at a frequency of approximately 1/8 years in the Fourier spectrum
of the El Niño region. Additionally, the importance of the reproducibil-
ity of the results for domain scientists was highlighted. While all results
presented in this chapter are reproducible by selecting the same sample
points, it would be significantly facilitated by saving the selections and
allowing for loading single or even multiple of them.

10.6 discussion and conclusion

This chapter presents a new approach for studying correlations in spatio-
temporal multi-field ensemble data1. Starting from an embedding, clus-
ters of correlated or anticorrelated spatial segments can be identified.
The correlations can be investigated in more detail in linked visualiza-
tions, including the spread over the ensemble. A direct time series vi-
sualization and the Fourier transform provide further insides into the
temporal evolution.

Besides verifying our approach using synthetic data, we proved its
usefulness by analyzing the MPI-GE. Besides identifying well-known
climate phenomena, we also found features, like the 8-year period in the
El Niño region, that we could not yet explain. A more detailed analy-
sis of this phenomenon and future research on improving the computa-
tion and visual representation of uncertainty in Fourier transforms could
yield further insights.

The approach presented in this chapter scales with the number of
segments instead of the input dimension of the data, which leads to
dependency only on the variability of the data. A high number of seg-
ments slows down the UMAP computation. However, as the embedding
does not need to be recalculated regularly, this should not significantly
influence the analysis process. The number of segments depends on the
spatial variability and the number of fields included in the analysis pro-
cess. Even though a higher number of fields leads to a more cluttered
scatterplot, the scalability with the number of fields can be improved by
choosing the most important fields directly in the visual analysis tool.
Thus, our approach also works on subsets of data with many segments
and fields where the fields can be changed during the analysis process.

1 https://github.com/marinaevers/multifield-correlations

https://github.com/marinaevers/multifield-correlations

10.6 discussion and conclusion 241

Our approach generalizes to other domains, especially in scientific
simulations, where correlations between spatial regions are of interest.
While we only discussed 2D examples in this chapter, all steps except the
map view are directly applicable to 3D data as well. For providing spa-
tial context, a suitable volume visualization like a volume rendering or
a surface visualization of the different segments is suitable even though
these visualizations might be cluttered for many fields. A generalization
of the segmentation embedding presented in Chapter 3 to multi-field
data would provide an additional overview of the spatial domain.

In this chapter, we focussed on analyzing correlations between several
fields but did not include the time lags as in Chapter 9. A combination
of the approach presented in this chapter with the analysis from the
previous chapter would allow for a more comprehensive analysis.

Part IV

C O N C L U S I O N

11
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we proposed novel approaches for the interactive visual
analysis of spatio-temporal simulation ensembles. While the analysis of
ensemble data contains many facets and analysis tasks, we focus on ana-
lyzing parameter spaces and global correlations between spatial regions.
For both topics, we presented approaches that allow for investigating
simulation ensembles on different levels of detail. We will summarize
our contributions before discussing future research directions and open
challenges.

In the first part, we developed methods for investigating the parame-
ter space and linking it to the simulation outcome. We presented novel
approaches for finding and analyzing partitions of the parameter space,
determining dependencies of the simulation outcome on the input pa-
rameters, and analyzing the sensitivity to the individual parameters.

At first, we proposed a general method to embed multi-dimensional
segmentations or partitionings into 2D where the area and the bound-
ary sizes are preserved (see Chapter 3). The embedding is created by
describing the segmentation of the multi-dimensional space in a graph
data structure which can be embedded in 2D using graph drawing al-
gorithms. A cellular automaton optimizes the visualization to preserve
the areas and boundary sizes. Our segmentation embedding allows for a
comprehensive visualization of the segmentation. The practical applica-
bility is demonstrated not only in 3D segmentations but also in the visu-
alization of multi-dimensional parameter-space partitionings (see Chap-
ter 4).

We presented an approach for a comprehensive analysis of multi-
dimensional parameter spaces in Chapter 4. Based on semi-automatic
clusterings in the similarity space of the simulation ensemble, we par-
titioned the parameter space to identify regions of similar simulation
outcomes. For a distortion-free parameter-space visualization, we pro-
vided an extended version of hyper-slices which allows for investigating
the different partitions and their boundaries. For providing an overview,

245

246 conclusion and future work

the segmentation embedding can be used, as well as a 2D projection of
the parameter-space samples. Additional coordinated views allow for
investigating the temporal evolution of all simulation runs as well as in-
dividual simulation runs. We applied our approach to three real-world
datasets from different domains and discussed it with corresponding do-
main experts. They rated the visualizations as helpful and highlighted
that our approach covers many facets of the data analysis and enables a
broader spectrum of analysis tasks.

Besides analyzing partitionings of the parameter space, we also pre-
sented methods to analyze the dependencies of the simulation outcome
on the input parameters. As simulations often result in complex data
where specific features should be preserved, we developed an interactive
workflow to define characteristic measures highly specific to the analy-
sis goal (see Chapter 5). The key component of the approach includes
directly embedding a programming interface for defining the measure
in the visual analysis application. The practical applicability was shown
by describing how to define an order parameter for state transitions in
active crystals [101].

Defining new measures to reduce the dimensionality of the simulation
outcome is especially helpful for data types and analysis tasks where no
established measures exist. For scalar fields, on the other hand, topolog-
ical descriptors are widely used. In Chapter 6, we discussed how topo-
logical landscapes can be used to study the evolution over parameter
variations. Therefore, we extended the approach by Herick et al. [154]
for temporally coherent topological landscapes. The application to 2D
and 3D ensemble datasets showed that coherent topological landscapes
allow for determining parameter values at which topological changes in
the simulation output occur. Additionally, stacked visualizations allow
for an overview of the topological variations over the parameter range.

While the previously discussed approaches study the influence of the
input parameters on the complete simulation output, we also investi-
gated spatial variations in the parameter sensitivities (see Chapter 7).
Here, we proposed a novel visualization of multiple, spatially resolved
sensitivity values. It is embedded in a workflow using coordinated views
to analyze different aspects of the spatial sensitivities. The practical ap-
plicability was shown by applying the approach to the analysis of med-
ical simulations and provided insights into which spatial regions are
more or less sensitive to the input parameters.

The second part of the thesis targets the uncertainty-aware analysis of
correlations among different spatial regions in simulation ensembles. We
present methods for a global correlation analysis that covers all pair-wise

conclusion and future work 247

correlations between different regions and does not require the choice of
a reference point.

We proposed similarity images (see Chapter 8) that provide a static
overview visualization by encoding correlations as perceived differences
between colors. Thus, high correlations correspond to similar colors,
while anti-correlations are encoded as different colors. Similarity im-
ages computed for a climate ensemble encode climate anomalies like the
North Atlantic Warming Hole and the characteristic regions for the El
Niño/Southern Oscillation. To investigate correlations between regions
in more detail, we presented an interactive visual analysis approach cov-
ering the uncertainty and the time lags between the different time series
(see Chapter 9). Based on a hierarchical segmentation of the similarity
image, multiple coordinated views enable an analysis on multiple levels
of detail. In discussion with a domain expert, he rated our tool as help-
ful for finding climate phenomena. As climate simulations commonly
include multiple fields, we extended the approach for multi-field data
(see Chapter 10). We use an 2D embedding of the segments to show
all correlations between all spatial segments of all fields. Thus, groups
of segments of various fields can be easily selected for further analysis
by selecting clusters in the embedding. Visualizations on different lev-
els of detail allow for a comprehensive analysis, including the variation
over the ensemble and the Fourier spectrum. Analyzing a large climate
ensemble enabled us to reproduce several observations from the IPCC
report and climate science in general.

Most of the approaches presented in this thesis have been evaluated
by discussing them with domain experts. While their specific feedback is
discussed in the corresponding chapters, some general observations will
be discussed here. First, collecting feedback early and regularly in the de-
sign and development process and, thus, closely collaborating with the
domain experts is very important to address the analysis tasks of interest.
For example, for the multi-field correlation analysis presented in Chap-
ter 10, analyzing the frequencies of the time series for the corresponding
segments was important for the domain scientist, which we were un-
aware of. Additionally, all domain scientists mentioned the importance
of including visualizations that they are familiar with and want to visual-
ize individual simulation outputs directly. This allows them to connect
their new findings with previous knowledge of the data. This connec-
tion to previous knowledge is also strengthened by accurately labeling
the data where adaptations to the customs of the domain are necessary.
By starting the analysis with replicating previous knowledge, domain
experts are able to build trust in the approach and become familiar with
the visualizations.

248 conclusion and future work

Many of the proposed approaches depend on similarity measures of
different kinds: The parameter-space partitioning depends on the sim-
ilarity measure between scalar fields, and creating coherent topologi-
cal landscapes is based on the similarity between merge trees or, more
specifically, their nodes. The analysis of spatial correlations is based on
the choice of the correlation measure, which is also used as a similar-
ity measure to create the similarity images and the embedding for the
multi-field analysis. Although it is possible to easily exchange the sim-
ilarity measure in all approaches without significantly changing all the
other steps, it should be chosen with great care. While a detailed com-
parison of different similarity measures could guide the user, often, this
choice strongly depends on the analysis task.

While the methods presented in this thesis cover different analysis
tasks, they all work on simulation ensembles, albeit with slightly differ-
ent facets. That is why the practical applicability could benefit from a
stronger integration of the approaches. For example, the coherent topo-
logical landscapes could be combined with the system for analyzing
the parameter-space partitioning by studying the topological variation
over a parameter value of a selected segment. Including the possibil-
ity to interactively define characteristic measures before partitioning the
parameter space would allow us to be very flexible in the aspects of the
simulation ensemble that should be included. The analysis of global hier-
archical correlations could also be combined with the spatial sensitivity
analysis as both approaches analyze the variations over space. This al-
lows for identifying regions of high sensitivity to input parameters and
then analyzing how these regions correlate to others, potentially also in
multiple other fields.

Some of the research prototypes developed within the scope of this
thesis are available as open source1. However, only providing the source
code does not lead to a common application in the different domains.
Bringing research prototypes to practice is a challenging task that has
been discussed increasingly over the recent years, as demonstrated by
the the VisGap workshop2 dedicated to this problem. One option to
bring the approaches presented in this thesis closer to the domain ex-
perts would be to include them in the tools they commonly use for ana-
lyzing the data, which requires a significant amount of implementation
effort.

In this work, we presented a set of approaches targeted at parame-
ter space and correlation analysis in ensemble data. However, this field
still contains several open research directions. While we mainly used

1 https://github.com/marinaevers/

2 https://visgap.gitlab.io

https://github.com/marinaevers/
https://visgap.gitlab.io

conclusion and future work 249

synthetic datasets for verification and evaluated our approaches algo-
rithmically and by collecting (informal) feedback from domain experts,
a more perception-based evaluation might yield additional insights. Per-
forming user studies on the systems provided in this thesis is difficult as
they are aimed at experts in their fields. Finding enough participants for
user studies is, therefore, very challenging. Further abstracting the tasks
would allow for performing user studies on individual aspects like se-
lected visual encodings. We briefly discussed the need for a user study
for the segmentation embedding in Chapter 3. However, other methods
could also benefit from this kind of evaluation. For example, we com-
pare the visualizations of the hyper-slicer to PCP and SPLOM and argue
why the latter cannot solve all of our tasks. Comparing these visualiza-
tions on a broader set of tasks would allow deriving guidelines on when
to use the hyper-slicer and in which cases one of the other visualiza-
tions is preferable. Similar considerations could be applied to the visual
encoding for the sensitivity volumes in Chapter 7.

Many different applications for deep learning in scientific data visual-
ization have been discussed lately [359]. Different steps of the workflows
presented in this thesis could be improved by including deep learning
methods. An obvious choice would be using surrogate models to ob-
tain a better sampling of the parameter space without the need to run
many computationally expensive simulations. Another option would be
using neural networks to learn similarity measures, similar to Similari-
tyNet [161].

Finally, several more general open research questions are related to the
work presented in this thesis. In many approaches, we used a dimension-
ality reduction algorithm on discrete samples of continuous, possibly un-
certain data. However, the dimensionality reduction algorithms do nei-
ther consider the continuity of the data nor their uncertainty. While some
approaches like Continuous Representation of the Projected Attribute
Space [233] for continuous projections and uncertainty-aware MDS [135]
provide first steps in this direction, the problem is not fully solved, espe-
cially when considering non-linear dimensionality reduction techniques.

Another broader field of research that is relatively poorly understood
is the investigation of multiple ensembles together. In Part iii of this the-
sis, we worked with the Max-Planck-Institute Grand Ensemble but only
focused on one of the scenarios while completely neglecting the others.
Including the different scenarios in our approaches is a non-trivial task,
as they add an additional dimension to the ensemble data and impose
additional and different analysis tasks.

Part V

A P P E N D I X

A
A D D I T I O N A L R E S U LT S

a.1 comparison of lmds and pmds

For comparing the performance between LMDS and PMDS (see Sec-
tion 2.3.1.2), we use a dataset of 100 data points with 10 dimensions
with random coordinates. Note that both methods profit from similar-
ity between the samples which is the reason why the random samples
provide the worst case for the algorithms. For estimating the accuracy
of the embedding, the Procrustes analysis [127] is used to determine the
similarity to the embedding using classical MDS, which we consider as
the ground truth. The Procrustes analysis can be used for determining
the distance between two point clouds for the optimal scaling, rotation
and translation. For the results shown here, we used the implementation
provided by SciPy.

The results are shown in Figure A.1. It is relatively surprising that
PMDS is faster than LMDS in most cases as theoretically, PMDS requires
O(kn+ k2n) additional computations for n sample points and a subset
of k samples. This observation might be explained by an inefficient com-

0 200 400 600 800 1000
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
oc

ru
st

es
 D

ist
an

ce

Pivot
LMDS

(a) Quality.

0 200 400 600 800 1000
k

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
[s

]

Pivot
Landmark
Classic

(b) Timings.

Figure A.1: Comparison between Landmark MDS and Pivot MDS on random syn-
thetic data.

253

254 additional results

putation. Additionally, the dataset is relatively small such that classical
MDS is in many cases faster than both algorithms. However, regarding
the quality, we can observe that PMDS is indeed closer to the ground
truth for most cases. Thus, we recommend the use of PMDS over LMDS.

a.2 similarity images

In the following, we present the similarity images and segmentations of
the remaining fields of the MPI-GE ensemble (see Section 8.5). We also
provide the percentages of the variation in the data that is covered in
the 3D space (see Table A.1) and the reduction of the data that can be
achieved by the segmentation (see Table A.2).

(a) ts. (b) psl.

Figure A.2: Similarity images with coastlines and segmentations of the surface
temperature and the sea level pressure.

A.2 similarity images 255

(a) tas. (b) tasAnomaly.

Figure A.3: Similarity images with coastlines and segmentations of the near-
surface air temperature and its anomaly.

(a) pr. (b) prAnomaly.

Figure A.4: Similarity images with coastlines and segmentations of the precipita-
tion and its anomaly.

256 additional results

Figure A.5: Similarity image with coastlines and segmentation of the relative pre-
cipitation anomaly.

Table A.1: Variation of the dataset covered by the first three eigenvalues.

Field Variation

Surface temperature (ts) 85.4%

Surface temperature anomaly (tsAnomaly) 26.7%

Near-surface air temperature (tas) 86.9%

Near-surface air temperature anomaly (tasAnomaly) 26.5%

Sea level pressure (psl) 53.4%

Sea level pressure anomaly (pslAnomaly) 36.6%

Precipitation (pr) 41.4%

Precipitation anomaly (prAnomaly) 9.0%

Relative precipitation anomaly (prRelativeAnomaly) 9.9%

A.2 similarity images 257

Table A.2: Data reduction for the different fields from 18,432 initial samples.

Field Segments % of original data

tsAnomaly 1027 5.5718

prAnomaly 978 5.3059

psl 507 2.7507

ts 957 5.1921

prAnomaly 1075 5.8322

prRelativeAnomaly 980 5.3168

pslAnomaly 432 2.3438

tas 999 5.4199

tasAnomaly 902 4.8937

258 additional results

a.3 evaluation of dgsa

In contrast to the other methods discussed in Section 7.5, DGSA also
depends on input parameters which strongly influence the result. While
we managed to evaluate the choice of the cluster number by an auto-
matic screening procedure, it still depends on the number of iterations
for the bootstrapping procedure. Therefore, we invesetigate the depen-
dency on the number of iterations. Here, we observe a clear decrease in
the variation but also an linear increase of the computation times as can
be seen in Figure A.6. As a trade-off, we choose 4000 iterations.

(a) Convergence (iterations). (b) Timings (iterations).

Figure A.6: DGSA converges with an increase in the number of iterations (a) but
the computation time also increases linearly (b).

A.4 evaluation of space-filling curves 259

a.4 evaluation of space-filling curves

Figure A.7 presents the evaluation for the SFC (see Section 7.5.3) per
dataset.

0 100 200 300 400 500
Lag

0.90

0.92

0.94

0.96

0.98

1.00

Au
to

co
rre

la
tio

n

Scanline
Hilbert
Difference
Euclidean
Squared Difference
Cos

(a) Synthetic, positional coherence.

0 100 200 300 400 500
Lag

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Au
to

co
rre

la
tio

n

Scanline
Hilbert
Difference
Euclidean
Squared Difference
Cos

(b) Synthetic, value coherence.

0 100 200 300 400 500
Lag

0.90

0.92

0.94

0.96

0.98

1.00

Au
to

co
rre

la
tio

n

Scanline
Hilbert
Difference
Euclidean
Squared Difference
Cos

(c) Ablation, positional coherence.

0 100 200 300 400 500
Lag

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Au
to

co
rre

la
tio

n

Scanline
Hilbert
Difference
Euclidean
Squared Difference
Cos

(d) Ablation, value coherence.

0 100 200 300 400 500
Lag

0.90

0.92

0.94

0.96

0.98

1.00

Au
to

co
rre

la
tio

n

Scanline
Hilbert
Difference
Euclidean
Squared Difference
Cos

(e) Aneurysm, positional coherence.

0 100 200 300 400 500
Lag

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Scanline
Hilbert
Difference
Euclidean
Squared Difference
Cos

(f) Aneurysm, value coherence.

Figure A.7: The autocorrelation of the sensitivity values reveals small differences
between the datasets while the general trend agrees with the observa-
tions for the averaged data in Figure 7.15. The color map in a) applies
to all visualizations except c).

B
D ATA S E T S

b.1 synthetic dataset with 4d parameter space

In the following, we will describe the creation of the synthetic dataset
as used in Chapter 4 in more detail. The dataset is driven by four pa-
rameters a1, a2, a3 and a4 ranging from 0 to 1 leading to a 4D param-
eter space. The parameter space is sampled on a regular grid as well
as using a Monte Carlo approach to allow for the comparison for other
techniques. For both sampling methods, we choose 625 samples.

For each set of parameters, we create a 2D scalar field with Gaussians
whose number depends on the parameters. The scalar field covers the
domain [0, 10] × [0, 10] which is sampled with a resolution of 64 × 64.
Independent of the parameter settings, one Gaussian is located in the
center but its standard deviation depends on the parameter a1. For a3 <

0.5 a second Gaussian whose standard deviation also depends on a3 is
located in the top right corner. Further, the parameter space is split on
the diagonal of the space formed by a1, a2 and a3 where the third
Gaussian in the lower left corner is only present on one half of the space.
The parameter a4 does not influence the result at all. In addition to this
definition, we add noise in the range [0, 0.1]. Thus, the scalar field g(x)

is defined as

g(x) =Θ(a1 − a2 − (1− a3)) · f(x; (1, 7), 1)

+Θ(0.5− a3) · f(x; (9, 1),a3 + 1)

+ f(x; (5, 5), 0.1a1 + 1) + ζ ,

where Θ(z) is the Heavyside function with Θ(z) = 0 for z < 0 and Θ(z) =

1 otherwise, f(x; (x1, x2),σ) describes a 2D Gaussian kernel centered at
(x1, x2) with standard deviation σ and ζ denotes uniform random noise
in the range [0, 0.1].

261

262 datasets

Figure B.1: The Swift-Hohenberg equation describes pattern formation in two di-
mensions (top: points, bottom: stripes).

b.2 reaction-diffusion system

The reaction diffusion system as used in Chapter 6 is described by the
partial differential equations [390]

∂ui

∂t
= dui

∆ui +α(uj − ui) + a− (b+ 1)ui + u2
i vi (B.1)

and

∂vi
∂t

= dvi
∆vi +α(vj − vi) + bui − u2

i vi , (B.2)

with i, j ∈ [1, 2], i ̸= j and where u1,u2, v1, v2 are the four components
over a two-dimensional domain and varying over time. The parameters
a, b, α, du1

, du2
, dv1

and dv2
influence which spatial pattern will form

and their influence should be investigated. The input parameters influ-
ence the type of pattern strongly. Two example runs with stripe and
point patterns are shown in Figure B.1. For the analysis in this work, we
focus on the field u1 with a spatial resolution of 32× 32.

b.3 cavity flow

The lid-driven cavity flow is a popular benchmark problem in flow sim-
ulation [401]. In Chapter 6, we consider a 3D domain with unit length
and use the Navier-Stokes equation for modelling the flow. The geom-
etry is shown in Figure B.2, where the top part of the box is moved
with a contant dimensionless velocity of 1 while on all other boundaries

B.3 cavity flow 263

1

Figure B.2: The lid-driven cavity flow problem models the flow in a box where
the top lid is moving with a constant speed.

no-slip boundary conditions are used. For the simulation, we use FEn-
iCSx [307, 306, 10].

The flow is driven by the Reynolds number Re which is a dimension-
less number that determines the transition between laminar and turbu-
lent flow. We vary the Reynolds number between 100 and 1000 in steps
of 100. Thus, we obtain a simulation ensemble consisting of 10 differ-
ent ensemble members. Each simulation run consists of 99 steps with a
dimensionless step width of 0.01. We omit the first time step where no
flow is present yet. For the analysis in Section 6.5.3, we consider only the
velocity magnitude with a resolution of 32× 32× 32.

B I B L I O G R A P H Y

[1] S. Afzal, R. Maciejewski, and D. S. Ebert. Visual analytics deci-
sion support environment for epidemic modeling and response
evaluation. In 2011 IEEE Conference on Visual Analytics Science and
Technology (VAST), pages 191–200, 2011.

[2] A. Agarwal, L. Caesar, N. Marwan, R. Maheswaran, B. Merz, and
J. Kurths. Network-based identification and characterization of
teleconnections on different scales. Scientific Reports, 9(1):1–12,
2019.

[3] M. Ahmed, Z. Liu, S. Humphries, and S. N. Goldberg. Computer
modeling of the combined effects of perfusion, electrical conduc-
tivity, and thermal conductivity on tissue heating patterns in ra-
diofrequency tumor ablation. International Journal of Hyperthermia,
24(7):577–588, 2008.

[4] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for
large data visualization. The visualization handbook, 717(8), 2005.

[5] W. Aigner, S. Miksch, W. Muller, H. Schumann, and C. Tominski.
Visual methods for analyzing time-oriented data. IEEE Transactions
on Visualization and Computer Graphics, 14(1):47–60, 2008.

[6] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski.
Visualizing time-oriented data—a systematic view. Computers &
Graphics, 31(3):401–409, 2007.

[7] H. Akiba, N. Fout, and K.-L. Ma. Simultaneous classification of
time-varying volume data based on the time histogram. In EuroVis,
volume 6, pages 1–8. Citeseer, 2006.

[8] O. S. Alabi, X. Wu, J. M. Harter, M. Phadke, L. Pinto, H. Petersen,
S. Bass, M. Keifer, S. Zhong, and C. Healey. Comparative visualiza-
tion of ensembles using ensemble surface slicing. In Visualization
and Data Analysis 2012, volume 8294, pages 318–329. SPIE, 2012.

[9] M. J. Alam, T. Biedl, S. Felsner, M. Kaufmann, S. G. Kobourov, and
T. Ueckerdt. Computing cartograms with optimal complexity. In
Proceedings of the twenty-eighth annual Symposium on Computational
Geometry, pages 21–30, 2012.

265

266 bibliography

[10] M. S. Alnaes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N.
Wells. Unified form language: A domain-specific language for
weak formulations of partial differential equations. ACM Trans-
actions on Mathematical Software, 40, 2014.

[11] B. Alper, N. Riche, G. Ramos, and M. Czerwinski. Design study
of linesets, a novel set visualization technique. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2259–2267, 2011.

[12] A. Amirkhanov, I. Kosiuk, P. Szmolyan, A. Amirkhanov, G. Mis-
telbauer, M. E. Gröller, and R. G. Raidou. ManyLands: A journey
across 4D phase space of trajectories. In Computer Graphics Forum,
volume 38, pages 191–202, 2019.

[13] G. Andrienko, N. Andrienko, S. Bremm, T. Schreck, T. V. Landes-
berger, P. Bak, and D. Keim. Space-in-time and time-in-space self-
organizing maps for exploring spatiotemporal patterns. Computer
Graphics Forum, 29(3):913–922, 2010.

[14] N. Andrienko and G. Andrienko. Exploratory analysis of spatial and
temporal data: a systematic approach. Springer Science & Business
Media, 2006.

[15] N. Andrienko and G. Andrienko. Visual analytics of movement:
An overview of methods, tools and procedures. Information Visual-
ization, 12(1):3–24, 2013.

[16] F. J. Anscombe. Graphs in statistical analysis. The American Statis-
tician, 27(1):17–21, 1973.

[17] A. Antonov, G. Lohmann, M. Ionita, M. Dima, and L. Linsen. An
interactive visual analysis tool for investigating teleconnections in
climate simulations. Environmental Earth Sciences, 78(10):294, 2019.

[18] D. Asimov. The grand tour: a tool for viewing multidimensional
data. SIAM journal on scientific and statistical computing, 6(1):128–
143, 1985.

[19] T. Athawale and A. Entezari. Uncertainty quantification in linear
interpolation for isosurface extraction. IEEE Transactions on Visual-
ization and Computer Graphics, 19(12):2723–2732, 2013.

[20] T. Athawale, E. Sakhaee, and A. Entezari. Isosurface visualization
of data with nonparametric models for uncertainty. IEEE Transac-
tions on Visualization and Computer Graphics, 22(1):777–786, 2015.

bibliography 267

[21] T. M. Athawale, D. Maljovec, L. Yan, C. R. Johnson, V. Pascucci,
and B. Wang. Uncertainty visualization of 2D Morse complex
ensembles using statistical summary maps. IEEE Transactions on
Visualization and Computer Graphics, 28(4):1955–1966, 2020.

[22] C. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In
Proceedings. Visualization ’97, pages 167–173, 1997.

[23] R. Ballester-Ripoll, G. Halter, and R. Pajarola. High-dimensional
scalar function visualization using principal parameterizations.
The Visual Computer, pages 1–18, 2023.

[24] R. Ballester-Ripoll, E. G. Paredes, and R. Pajarola. Tensor algo-
rithms for advanced sensitivity metrics. SIAM/ASA Journal on Un-
certainty Quantification, 6(3):1172–1197, 2018.

[25] R. Ballester-Ripoll, E. G. Paredes, and R. Pajarola. Sobol tensor
trains for global sensitivity analysis. Reliability Engineering & Sys-
tem Safety, 183:311–322, 2019.

[26] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine
learning, 56(1-3):89–113, 2004.

[27] C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data
flow diagrams. IEEE Transactions on Software Engineering, (4):538–
546, 1986.

[28] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe,
and G. Volpe. Active particles in complex and crowded environ-
ments. Reviews of Modern Physics, 88(4):045006, 2016.

[29] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete.
Matrix reordering methods for table and network visualization. In
Computer Graphics Forum, volume 35, pages 693–716. Wiley Online
Library, 2016.

[30] K. Beketayev, G. H. Weber, D. Morozov, A. Abzhanov, and
B. Hamann. Geometry-preserving topological landscapes. In Pro-
ceedings of the Workshop at SIGGRAPH Asia, pages 155–160, 2012.

[31] K. Beketayev, D. Yeliussizov, D. Morozov, G. H. Weber, and
B. Hamann. Measuring the distance between merge trees. Springer,
2014.

[32] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation co-
efficient. In Noise reduction in speech processing, pages 1–4. Springer,
2009.

268 bibliography

[33] W. Berger, H. Piringer, P. Filzmoser, and E. Gröller. Uncertainty-
aware exploration of continuous parameter spaces using multivari-
ate prediction. Computer Graphics Forum, 30(3):911–920, 2011.

[34] S. Bergner, M. Sedlmair, T. Möller, S. N. Abdolyousefi, and A. Saad.
Paraglide: Interactive parameter space partitioning for computer
simulations. IEEE Transactions on Visualization and Computer Graph-
ics, 19(9):1499–1512, 2013.

[35] P. Bille. A survey on tree edit distance and related problems. The-
oretical computer science, 337(1-3):217–239, 2005.

[36] T. Bin Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gue-
unet, P. Guillou, L. Hofmann, P. Hristov, A. Kamakshidasan,
C. Kappe, P. Klacansky, P. Laurin, J. Levine, J. Lukasczyk, D. Saku-
rai, M. Soler, P. Steneteg, J. Tierny, W. Usher, J. Vidal, and M. Woz-
niak. An Overview of the Topology ToolKit. In TopoInVis, 2019.

[37] A. Biswas, G. Lin, X. Liu, and H.-W. Shen. Visualization of time-
varying weather ensembles across multiple resolutions. IEEE
Transactions on Visualization and Computer Graphics, 23(1):841–850,
2016.

[38] A. Bock, A. Pembroke, M. L. Mays, L. Rastaetter, T. Ropinski, and
A. Ynnerman. Visual verification of space weather ensemble sim-
ulations. In 2015 IEEE Scientific Visualization Conference (SciVis),
pages 17–24. IEEE, 2015.

[39] N. Boers, B. Goswami, A. Rheinwalt, B. Bookhagen, B. Hoskins,
and J. Kurths. Complex networks reveal global pattern of extreme-
rainfall teleconnections. Nature, 566(7744):373–377, 2019.

[40] G.-P. Bonneau, H.-C. Hege, C. R. Johnson, M. M. Oliveira, K. Pot-
ter, P. Rheingans, and T. Schultz. Overview and state-of-the-art
of uncertainty visualization. In Scientific Visualization, pages 3–27.
Springer, 2014.

[41] M. Booshehrian, T. Möller, R. M. Peterman, and T. Munzner. Vis-
mon: Facilitating analysis of trade-offs, uncertainty, and sensitivity
in fisheries management decision making. In Computer Graphics Fo-
rum, volume 31, pages 1235–1244. Wiley Online Library, 2012.

[42] U. D. Bordoloi, D. L. Kao, and H.-W. Shen. Visualization tech-
niques for spatial probability density function data. Data Science
Journal, 3:153–162, 2004.

bibliography 269

[43] E. Borgonovo. A new uncertainty importance measure. Reliability
Engineering & System Safety, 92(6):771–784, 2007.

[44] A. Borrelli and J. Wellmann. Computer simulations then and now:
an introduction and historical reassessment. NTM Zeitschrift für
Geschichte der Wissenschaften, Technik und Medizin, 27(4):407–417,
2019.

[45] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, 2011.

[46] P. Bovenkamp. 4D-Phasenkontrast- und Magnetisierungs-
Sättigungstransfer-MRT zur Charakterisierung des vaskulären Systems.
PhD thesis, Westfälische Wilhelms-Universität Münster, 2016.

[47] J. M. Boyer and W. J. Myrvold. Simplified O(n) planarity by edge
addition. Graph Algorithms Appl, 5:241, 2006.

[48] U. Brandes and C. Pich. Eigensolver methods for progressive mul-
tidimensional scaling of large data. In International Symposium on
Graph Drawing, pages 42–53. Springer, 2006.

[49] R. Brecheisen, A. Vilanova, B. Platel, and B. ter Haar Romeny.
Parameter sensitivity visualization for DTI fiber tracking. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1441–1448,
2009.

[50] P. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell. Analyzing
and tracking burning structures in lean premixed hydrogen flames.
IEEE Transactions on Visualization and Computer Graphics, 16(2):248–
260, 2010.

[51] C. A. Brewer. Color Brewer. http://www.ColorBrewer.org, 2013.
Accessed 17-March-2020.

[52] K. Brodlie, R. Allendes Osorio, and A. Lopes. A review of uncer-
tainty in data visualization. Expanding the frontiers of visual analytics
and visualization, pages 81–109, 2012.

[53] S. Bruckner and T. Möller. Result-driven exploration of simulation
parameter spaces for visual effects design. IEEE Transactions on
Visualization and Computer Graphics, 16(6):1468–1476, 2010.

http://www.ColorBrewer.org

270 bibliography

[54] J. Buchmüller, D. Jäckle, E. Cakmak, U. Brandes, and D. A. Keim.
Motionrugs: Visualizing collective trends in space and time. IEEE
Transactions on Visualization and Computer Graphics, 25(1):76–86,
2018.

[55] H. Carr and D. Duke. Joint contour nets. IEEE Transactions on
Visualization and Computer Graphics, 20(8):1100–1113, 2013.

[56] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Computational Geometry, 24(2):75–94, 2003.

[57] D. Castelvecchi and E. Gibney. CERN makes bold push to build
€21-billion supercollider. Nature, 2020.

[58] P. Chalermsook and A. Schmid. Finding triangles for maximum
planar subgraphs. In International Workshop on Algorithms and Com-
putation, pages 373–384. Springer, 2017.

[59] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1–27:27, 2011.

[60] C.-K. Chen, C. Wang, K.-L. Ma, and A. T. Wittenberg. Static cor-
relation visualization for large time-varying volume data. In 2011
IEEE Pacific Visualization Symposium, pages 27–34. IEEE, 2011.

[61] D. Chen, M. Rojas, B. Samset, K. Cobb, A. Diongue Niang, P. Ed-
wards, S. Emori, S. Faria, E. Hawkins, P. Hope, P. Huybrechts,
M. Meinshausen, S. Mustafa, G.-K. Plattner, and A.-M. Tréguier.
Framing, Context, and Methods, page 147–286. Cambridge Univer-
sity Press, Cambridge, United Kingdom and New York, NY, USA,
2021.

[62] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel. The open graph drawing framework (ogdf). Handbook
of graph drawing and visualization, 2011:543–569, 2013.

[63] M. Chimani, M. Ilsen, and T. Wiedera. Star-struck by fixed embed-
dings: Modern crossing number heuristics. In International Sym-
posium on Graph Drawing and Network Visualization, pages 41–56.
Springer, 2021.

[64] B. Chopard and M. Droz. Cellular Automata Modeling of Physical
Systems. Collection Alea-Saclay: Monographs and Texts in Statisti-
cal Physics. Cambridge University Press, 1998.

bibliography 271

[65] M. C. Chuah and S. F. Roth. On the semantics of interactive visu-
alizations. In Proceedings IEEE Symposium on Information Visualiza-
tion’96, pages 29–36. IEEE, 1996.

[66] D. Collaris and J. J. van Wijk. ExplainExplore: Visual exploration
of machine learning explanations. In 2020 IEEE Pacific Visualization
Symposium (PacificVis), pages 26–35. IEEE, 2020.

[67] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing
set relations with isocontours over existing visualizations. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1009–1016,
2009.

[68] K. A. Cook and J. J. Thomas. Illuminating the path: The research
and development agenda for visual analytics. Technical report,
Pacific Northwest National Lab.(PNNL), Richland, WA (United
States), 2005.

[69] J. Cousty and L. Najman. Incremental algorithm for hierarchical
minimum spanning forests and saliency of watershed cuts. In
International Symposium on Mathematical Morphology and Its Applica-
tions to Signal and Image Processing, pages 272–283. Springer, 2011.

[70] J. Cousty, L. Najman, and B. Perret. Constructive links between
some morphological hierarchies on edge-weighted graphs. In
Mathematical Morphology and Its Applications to Signal and Image Pro-
cessing: 11th International Symposium, ISMM 2013, Uppsala, Sweden,
May 27-29, 2013. Proceedings 11, pages 86–97. Springer, 2013.

[71] P. Crossno. Challenges in visual analysis of ensembles. IEEE Com-
puter Graphics and Applications, 38(2):122–131, 2018.

[72] R. Cutura, C. Morariu, Z. Cheng, Y. Wang, D. Weiskopf, and
M. Sedlmair. Hagrid—gridify scatterplots with hilbert and gosper
curves. In Proceedings of the 14th International Symposium on Visual
Information Communication and Interaction, pages 1–8, 2021.

[73] O. Daae Lampe, C. Correa, K. Ma, and H. Hauser. Curve-centric
volume reformation for comparative visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1235–1242, 2009.

[74] R. Dafner, D. Cohen-Or, and Y. Matias. Context-based space filling
curves. In Computer Graphics Forum, volume 19, pages 209–218.
Wiley Online Library, 2000.

272 bibliography

[75] C. Dalelane, K. Winderlich, and A. Walter. Evaluation of global
teleconnections in CMIP6 climate projections using complex net-
works. Earth System Dynamics, 14(1):17–37, 2023.

[76] D. Demir, K. Beketayev, G. H. Weber, P.-T. Bremer, V. Pascucci, and
B. Hamann. Topology exploration with hierarchical landscapes.
In Proceedings of the Workshop at SIGGRAPH Asia, WASA ’12, page
147–154, New York, NY, USA, 2012. Association for Computing
Machinery.

[77] I. Demir, C. Dick, and R. Westermann. Multi-charts for compara-
tive 3D ensemble visualization. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2694–2703, 2014.

[78] I. Demir, M. Jarema, and R. Westermann. Visualizing the central
tendency of ensembles of shapes. In SIGGRAPH ASIA 2016 Sym-
posium on Visualization, pages 1–8, 2016.

[79] I. Demir, J. Kehrer, and R. Westermann. Screen-space silhouettes
for visualizing ensembles of 3D isosurfaces. In 2016 IEEE Pacific
Visualization Symposium (PacificVis), pages 204–208. IEEE, 2016.

[80] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph drawing,
volume 357. Prentice Hall, Upper Saddle River, NJ, 1999.

[81] W. Didimo, G. Liotta, and F. Montecchiani. A survey on graph
drawing beyond planarity. ACM Computing Surveys (CSUR),
52(1):1–37, 2019.

[82] H. Doleisch, M. Gasser, and H. Hauser. Interactive feature specifi-
cation for focus+ context visualization of complex simulation data.
In VisSym, volume 3, pages 239–248. Citeseer, 2003.

[83] H. Doraiswamy and V. Natarajan. Computing reeb graphs as a
union of contour trees. IEEE Transactions on Visualization and Com-
puter Graphics, 19(2):249–262, 2012.

[84] D. Dorling. Area cartograms: their use and creation. In Concepts
and techniques in modern geography series. Environmental Publica-
tions, University of East Anglia, 1996.

[85] D. Drees, S. Leistikow, X. Jiang, and L. Linsen. Voreen–an open-
source framework for interactive visualization and processing of
large volume data. arXiv preprint arXiv:2207.12746, 2022.

bibliography 273

[86] C. A. Duncan and M. T. Goodrich. Planar orthogonal and polyline
drawing algorithms. In Handbook of Graph Drawing and Visualiza-
tion, 2013.

[87] R. Earnshaw and N. Wiseman. An introductory guide to scientific
visualization. Springer Science & Business Media, 2012.

[88] D. Eddelbuettel and R. Francois. RInside: C++ Classes to Embed R
in C++ Applications, 2019. R package version 0.2.15.

[89] H. Edelsbrunner and J. Harer. Persistent homology-a survey. Con-
temporary mathematics, 453:257–282, 2008.

[90] H. Edelsbrunner and J. Harer. Computational geometry: An introduc-
tion. American Mathematical Soc., 2010.

[91] H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and
J. Snoeyink. Time-varying reeb graphs for continuous space-time
data. Computational Geometry: Theory and Applications, vol. 41, no. 3,
November 1, 2008, pp. 149-166, 41(LLNL-JRNL-403147), 2008.

[92] A. Efrat, Y. Hu, S. G. Kobourov, and S. Pupyrev. MapSets: Visual-
izing embedded and clustered graphs. In International Symposium
on Graph Drawing, pages 452–463. Springer, 2014.

[93] C. Eichner, H. Schumann, and C. Tominski. Making parameter de-
pendencies of time-series segmentation visually understandable.
In Computer Graphics Forum, volume 39, pages 607–622. Wiley On-
line Library, 2020.

[94] N. Ekhtiari, C. Ciemer, C. Kirsch, and R. V. Donner. Coupled
network analysis revealing global monthly scale co-variability pat-
terns between sea-surface temperatures and precipitation in de-
pendence on the ENSO state. The European Physical Journal Special
Topics, 230(14):3019–3032, 2021.

[95] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the dice:
Multidimensional visual exploration using scatterplot matrix nav-
igation. IEEE Transactions on Visualization and Computer Graphics,
14(6):1539–1148, 2008.

[96] V. A. Epanechnikov. Non-parametric estimation of a multivari-
ate probability density. Theory of Probability & Its Applications,
14(1):153–158, 1969.

274 bibliography

[97] G. B. Ermentrout and L. Edelstein-Keshet. Cellular automata
approaches to biological modeling. Journal of Theoretical Biology,
160(1):97–133, 1993.

[98] M. Espadoto, R. M. Martins, A. Kerren, N. S. Hirata, and A. C.
Telea. Toward a quantitative survey of dimension reduction tech-
niques. IEEE Transactions on Visualization and Computer Graphics,
27(3):2153–2173, 2019.

[99] M. Evers, K. Huesmann, and L. Linsen. Uncertainty-aware visu-
alization of regional time series correlation in spatio-temporal en-
sembles. In Computer Graphics Forum, volume 40, pages 519–530.
Wiley Online Library, 2021.

[100] M. Evers and L. Linsen. Multi-dimensional parameter-space par-
titioning of spatio-temporal simulation ensembles. Computers &
Graphics, 104:140–151, 2022.

[101] M. Evers and R. Wittkowski. A colloidal time crystal and its tem-
pomechanical properties. arXiv preprint arXiv:2112.04498, 2021.

[102] G. Favelier, N. Faraj, B. Summa, and J. Tierny. Persistence atlas for
critical point variability in ensembles. IEEE Transactions on Visual-
ization and Computer Graphics, 25(1):1152–1162, 2018.

[103] D. Fenwick, C. Scheidt, and J. Caers. Quantifying asymmetric pa-
rameter interactions in sensitivity analysis: application to reservoir
modeling. Mathematical Geosciences, 46(4):493–511, 2014.

[104] O. Fernandes, S. Frey, G. Reina, and T. Ertl. Visual representation
of region transitions in multi-dimensional parameter spaces. Smart
Tools and Apps for Graphics - Eurographics Italian Chapter Conference,
2019.

[105] F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann. Visual
analysis of spatial variability and global correlations in ensembles
of iso-contours. In Computer Graphics Forum, volume 35, pages
221–230. Wiley Online Library, 2016.

[106] F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann. Time-
hierarchical clustering and visualization of weather forecast en-
sembles. IEEE Transactions on Visualization and Computer Graphics,
23(1):831–840, 2017.

bibliography 275

[107] S. Few. Time on the horizon. http://www.perceptualedge.

com/articles/visual_business_intelligence/time_on_the_

horizon.pdf, 2008. [Online; accessed 25-March-2022].

[108] M. T. Fischer, A. Frings, D. A. Keim, and D. Seebacher. Towards a
survey on static and dynamic hypergraph visualizations. In 2021
IEEE Visualization Conference (VIS), pages 81–85. IEEE, 2021.

[109] W. D. Fisher. On grouping for maximum homogeneity. Journal of
the American Statistical Association, 53(284):789–798, 1958.

[110] A. Fofonov and L. Linsen. Multivisa: Visual analysis of multi-run
physical simulation data using interactive aggregated plots. In
VISIGRAPP (3: IVAPP), pages 62–73, 2018.

[111] A. Fofonov and L. Linsen. Projected field similarity for compar-
ative visualization of multi-run multi-field time-varying spatial
data. Computer Graphics Forum, 38(1):286–299, 2018.

[112] A. Fofonov, V. Molchanov, and L. Linsen. Visual analysis of multi-
run spatio-temporal simulations using isocontour similarity for
projected views. IEEE Transactions on Visualization and Computer
Graphics, (8):2037–2050, 2016.

[113] M. Franke, H. Martin, S. Koch, and K. Kurzhals. Visual analysis of
spatio-temporal phenomena with 1D projections. In Eurovis 2021-
23rd EG Conference on Visualization, 2021.

[114] S. Frey, F. Sadlo, and T. Ertl. Visualization of temporal similarity in
field data. IEEE Transactions on Visualization and Computer Graphics,
18(12):2023–2032, 2012.

[115] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and experience, 21(11):1129–
1164, 1991.

[116] J. Fruth, O. Roustant, and T. Muehlenstaedt. The fanovagraph
package: Visualization of interaction structures and construction
of block-additive kriging models. HAL preprint 00795229, 2013.

[117] R. Fuchs and H. Hauser. Visualization of multi-variate scientific
data. Computer Graphics Forum, 28(6):1670–1690, 2009.

[118] T. Fujiwara, N. Sakamoto, J. Nonaka, K. Yamamoto, and K.-L.
Ma. A visual analytics framework for reviewing multivariate time-
series data with dimensionality reduction. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1601–1611, 2020.

http://www.perceptualedge.com/articles/visual_business _intelligence/time_on_the_horizon.pdf
http://www.perceptualedge.com/articles/visual_business _intelligence/time_on_the_horizon.pdf
http://www.perceptualedge.com/articles/visual_business _intelligence/time_on_the_horizon.pdf

276 bibliography

[119] E. R. Gansner, Y. Hu, and S. Kobourov. GMap: Visualizing graphs
and clusters as maps. In 2010 IEEE Pacific Visualization Symposium
(PacificVis), pages 201–208. IEEE, 2010.

[120] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance.
Pattern Analysis and applications, 13:113–129, 2010.

[121] M. R. Garey and D. S. Johnson. Crossing number is NP-complete.
SIAM Journal on Algebraic Discrete Methods, 4(3):312–316, 1983.

[122] H. Gibson, J. Faith, and P. Vickers. A survey of two-dimensional
graph layout techniques for information visualisation. Information
Visualization, 12(3-4):324–357, 2013.

[123] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. Informa-
tion Visualization, 10(4):289–309, 2011.

[124] J. Görtler, T. Spinner, D. Streeb, D. Weiskopf, and O. Deussen.
Uncertainty-aware principal component analysis. IEEE Transac-
tions on Visualization and Computer Graphics, 26(1):822–831, 2019.

[125] L. Gosink, J. Anderson, W. Bethel, and K. Joy. Variable interactions
in query-driven visualization. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1400–1407, 2007.

[126] L. Gosink, K. Bensema, T. Pulsipher, H. Obermaier, M. Henry,
H. Childs, and K. I. Joy. Characterizing and visualizing predic-
tive uncertainty in numerical ensembles through bayesian model
averaging. IEEE Transactions on Visualization and Computer Graphics,
19(12):2703–2712, 2013.

[127] J. C. Gower. Generalized procrustes analysis. Psychometrika, 40:33–
51, 1975.

[128] H. Griethe and H. Schumann. The visualization of uncertain data:
Methods and problems. In SimVis, pages 143–156, 2006.

[129] D. Günther, J. Salmon, and J. Tierny. Mandatory critical points of
2D uncertain scalar fields. In Proceedings of the 16th Eurographics
Conference on Visualization, pages 31–40. Eurographics Association,
2014.

[130] D. Guo, J. Chen, A. MacEachren, and K. Liao. A visualization sys-
tem for space-time and multivariate patterns (VIS-STAMP). IEEE
Transactions on Visualization and Computer Graphics, 12(6):1461–1474,
2006.

bibliography 277

[131] A. Gyulassy, N. Kotava, M. Kim, C. D. Hansen, H. Hagen, and
V. Pascucci. Direct feature visualization using Morse-Smale com-
plexes. IEEE Transactions on Visualization and Computer Graphics,
18(9):1549–1562, 2011.

[132] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient
computation of Morse-Smale complexes for three-dimensional
scalar functions. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1440–1447, 2007.

[133] H. Ha, G. B. Kim, J. Kweon, S. J. Lee, Y.-H. Kim, D. H. Lee,
D. H. Yang, and N. Kim. Hemodynamic measurement using four-
dimensional phase-contrast MRI: quantification of hemodynamic
parameters and clinical applications. Korean journal of radiology,
17(4):445–462, 2016.

[134] M. Hadwiger, C. Berger, and H. Hauser. High-quality two-level
volume rendering of segmented data sets on consumer graphics
hardware. In IEEE Visualization, 2003. VIS 2003., pages 301–308.
IEEE, 2003.

[135] D. Hägele, T. Krake, and D. Weiskopf. Uncertainty-aware multidi-
mensional scaling. IEEE Transactions on Visualization and Computer
Graphics, 2022.

[136] D. M. Hamby. A review of techniques for parameter sensitivity
analysis of environmental models. Environmental Monitoring and
Assessment, 32(2):135–154, 1994.

[137] J. Han, H. Zheng, Y. Xing, D. Z. Chen, and C. Wang. V2V: A deep
learning approach to variable-to-variable selection and translation
for multivariate time-varying data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 27(2):1290–1300, 2020.

[138] L. Hao, C. G. Healey, and S. A. Bass. Effective visualization of tem-
poral ensembles. IEEE Transactions on Visualization and Computer
Graphics, 22(1):787–796, 2016.

[139] W. Harvey and Y. Wang. Topological landscape ensembles for vi-
sualization of scalar-valued functions. In Computer Graphics Forum,
volume 29, pages 993–1002. Wiley Online Library, 2010.

[140] H. Hauser, F. Ledermann, and H. Doleisch. Angular brushing of
extended parallel coordinates. In IEEE Symposium on Information
Visualization, 2002. INFOVIS 2002., pages 127–130. IEEE, 2002.

278 bibliography

[141] H. Hauser, L. Mroz, G. I. Bischi, and M. E. Groller. Two-level
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 7(3):242–252, 2001.

[142] S. Hazarika, H. Li, K. Wang, H. Shen, and C. Chou. NNVA: Neu-
ral network assisted visual analysis of yeast cell polarization sim-
ulation. IEEE Transactions on Visualization and Computer Graphics,
26(1):34–44, 2020.

[143] S. Hazarika, A. Biswas, E. Lawrence, and P. J. Wolfram. Proba-
bilistic principal component analysis guided spatial partitioning
of multivariate ocean biogeochemistry data. In S. Dutta, K. Feige,
K. Rink, and D. Zeckzer, editors, Workshop on Visualisation in Envi-
ronmental Sciences (EnvirVis). The Eurographics Association, 2021.

[144] S. Hazarika, A. Biswas, and H.-W. Shen. Uncertainty visualization
using copula-based analysis in mixed distribution models. IEEE
Transactions on Visualization and Computer Graphics, 24(1):934–943,
2017.

[145] S. Hazarika, S. Dutta, and H.-W. Shen. Visualizing the variations
of ensemble of isosurfaces. In 2016 IEEE Pacific Visualization Sym-
posium (PacificVis), pages 209–213. IEEE, 2016.

[146] J. He, H. Chen, Y. Chen, X. Tang, and Y. Zou. Variable-based spa-
tiotemporal trajectory data visualization illustrated. IEEE Access,
7:143646–143672, 2019.

[147] W. He, J. Wang, H. Guo, H.-W. Shen, and T. Peterka. CECAV-DNN:
Collective ensemble comparison and visualization using deep neu-
ral networks. Visual Informatics, 2020.

[148] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. G.
Nashed, and T. Peterka. InSituNet: Deep image synthesis for pa-
rameter space exploration of ensemble simulations. IEEE Transac-
tions on Visualization and Computer Graphics, 26(1):23–33, 2019.

[149] X. He, Y. Tao, Q. Wang, and H. Lin. A co-analysis framework for
exploring multivariate scientific data. Visual Informatics, 2(4):254–
263, 2018.

[150] X. He, Y. Tao, Q. Wang, and H. Lin. Multivariate spatial data
visualization: A survey. Journal of Visualization, 22(5):897–912, 2019.

bibliography 279

[151] K. Heimes, M. Evers, T. Gerrits, S. Gyawali, D. Sinden, T. Preusser,
and L. Linsen. Studying the effect of tissue properties on radiofre-
quency ablation by visual simulation ensemble analysis. In R. G.
Raidou, B. Sommer, T. W. Kuhlen, M. Krone, T. Schultz, and H.-Y.
Wu, editors, Eurographics Workshop on Visual Computing for Biology
and Medicine. The Eurographics Association, 2022.

[152] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-
based methods in visualization. In Computer Graphics Forum, vol-
ume 35, pages 643–667. Wiley Online Library, 2016.

[153] J. Heinrich and D. Weiskopf. State of the art of parallel coordinates.
Eurographics (State of the Art Reports), pages 95–116, 2013.

[154] M. Herick, V. Molchanov, and L. Linsen. Temporally coherent topo-
logical landscapes for time-varying scalar fields. In VISIGRAPP (3:
IVAPP), pages 54–61, 2020.

[155] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization
and navigation in information visualization: A survey. IEEE Trans-
actions on Visualization and Computer Graphics, 6(1):24–43, 2000.

[156] J. Herman and W. Usher. SALib: An open-source python library
for sensitivity analysis. The Journal of Open Source Software, 2(9),
2017.

[157] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächen-
stück. Dritter Band: Analysis · Grundlagen der Mathematik· Physik
Verschiedenes: Nebst Einer Lebensgeschichte, pages 1–2, 1935.

[158] T. Höllt, A. Magdy, P. Zhan, G. Chen, G. Gopalakrishnan, I. Hoteit,
C. D. Hansen, and M. Hadwiger. Ovis: A framework for visual
analysis of ocean forecast ensembles. IEEE Transactions on Visual-
ization and Computer Graphics, 20(8):1114–1126, 2014.

[159] T. Horak, P. Berger, H. Schumann, R. Dachselt, and C. Tominski.
Responsive matrix cells: A focus+context approach for exploring
and editing multivariate graphs. IEEE Transactions on Visualization
and Computer Graphics, 27:1644–1654, 2020.

[160] Y. Hu, E. R. Gansner, and S. Kobourov. Visualizing graphs and
clusters as maps. IEEE Computer Graphics and Applications, 30(6):54–
66, 2010.

280 bibliography

[161] K. Huesmann and L. Linsen. SimilarityNet: A deep neural net-
work for similarity analysis within spatio-temporal ensembles.
Computer Graphics Forum, 41(3):379–389, 2022.

[162] J. W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck. An over-
view of the North Atlantic oscillation. Geophysical Monograph-
American Geophysical Union, 134:1–36, 2003.

[163] A. Inselberg and B. Dimsdale. Parallel coordinates. Human-
Machine Interactive Systems, pages 199–233, 2009.

[164] T. Iwanaga, W. Usher, and J. Herman. Toward SALib 2.0: Advanc-
ing the accessibility and interpretability of global sensitivity anal-
yses. Socio-Environmental Systems Modelling, 4:18155, 2022.

[165] D. Jäckle, F. Fischer, T. Schreck, and D. A. Keim. Temporal MDS
plots for analysis of multivariate data. IEEE Transactions on Visual-
ization and Computer Graphics, 22(1):141–150, 2015.

[166] H. Jänicke, M. Böttinger, U. Mikolajewicz, and G. Scheuermann.
Visual exploration of climate variability changes using wavelet
analysis. IEEE Transactions on Visualization and Computer Graphics,
15(6):1375–1382, 2009.

[167] H. Jänicke, M. Böttinger, and G. Scheuermann. Brushing of at-
tribute clouds for the visualization of multivariate data. IEEE
Transactions on Visualization and Computer Graphics, 14(6):1459–1466,
2008.

[168] J. Jankowai and I. Hotz. Feature level-sets: Generalizing iso-
surfaces to multi-variate data. IEEE Transactions on Visualization
and Computer Graphics, 26(2):1308–1319, 2020.

[169] M. Jarema, I. Demir, J. Kehrer, and R. Westermann. Comparative
visual analysis of vector field ensembles. In 2015 IEEE Conference
on Visual Analytics Science and Technology (VAST). IEEE, 2015.

[170] R. Jayakumar, K. Thulasiraman, and M. Swamy. O(n/sup 2/) al-
gorithms for graph planarization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 8(3):257–267, 1989.

[171] D. Jen, P. Parente, J. Robbins, C. Weigle, R. M. Taylor, A. Burette,
and R. Weinberg. Imagesurfer: A tool for visualizing correlations
between two volume scalar fields. In IEEE Visualization 2004, pages
529–536. IEEE, 2004.

bibliography 281

[172] A. Jena, U. Engelke, T. Dwyer, V. Raiamanickam, and C. Paris. Un-
certainty visualisation: An interactive visual survey. In 2020 IEEE
Pacific Visualization Symposium (PacificVis), pages 201–205. IEEE,
2020.

[173] J. Johansson and C. Forsell. Evaluation of parallel coordinates:
Overview, categorization and guidelines for future research. IEEE
Transactions on Visualization and Computer Graphics, 22(1):579–588,
2015.

[174] J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing structure
within clustered parallel coordinates displays. In IEEE Symposium
on Information Visualization, 2005. INFOVIS 2005., pages 125–132.
IEEE, 2005.

[175] C. Johnson. Top scientific visualization research problems. IEEE
Computer Graphics and Applications, 24(4):13–17, 2004.

[176] C. R. Johnson and A. R. Sanderson. A next step: Visualizing errors
and uncertainty. IEEE Computer Graphics and Applications, 23(5):6–
10, 2003.

[177] I. T. Jolliffe and J. Cadima. Principal component analysis: a review
and recent developments. Philosophical Transactions of the Royal So-
ciety A, 374(2065):20150202, 2016.

[178] H. Jänicke, A. Wiebel, G. Scheuermann, and W. Kollmann. Multi-
field visualization using local statistical complexity. IEEE Transac-
tions on Visualization and Computer Graphics, 13(6):1384–1391, 2007.

[179] T. Kamada and S. Kawai. An algorithm for drawing general undi-
rected graphs. Information processing letters, 31(1):7–15, 1989.

[180] D. Kao, A. Luo, J. L. Dungan, and A. Pang. Visualizing spatially
varying distribution data. In Proceedings Sixth International Confer-
ence on Information Visualisation, pages 219–225. IEEE, 2002.

[181] C. Kappe, M. Böttinger, and H. Leitte. Analysis of decadal cli-
mate predictions with user-guided hierarchical ensemble cluster-
ing. Computer Graphics Forum, 38(3):505–515, 2019.

[182] J. Kehrer, P. Filzmoser, and H. Hauser. Brushing moments in in-
teractive visual analysis. In Computer Graphics Forum, volume 29,
pages 813–822. Wiley Online Library, 2010.

282 bibliography

[183] J. Kehrer and H. Hauser. Visualization and visual analysis of mul-
tifaceted scientific data: A survey. IEEE Transactions on Visualization
and Computer Graphics, 19(3):495–513, 2013.

[184] P. Keil, T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck,
and R. Ghosh. Multiple drivers of the North Atlantic warming
hole. Nature Climate Change, 10(7):667–671, 2020.

[185] D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann. Mastering the
information age: solving problems with visual analytics. Eurographics
Association, 2010.

[186] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and
H. Ziegler. Visual analytics: Scope and challenges. In Visual data
mining, pages 76–90. Springer, 2008.

[187] K. C. Kempfert, Y. Wang, C. Chen, and S. W. K. Wong. A compari-
son study on nonlinear dimension reduction methods with kernel
variations: Visualization, optimization and classification. Intelli-
gent Data Analysis, 24(2):267–290, 2020.

[188] A. Kerren and F. Schreiber. Why integrate InfoVis and SciVis?:
An example from systems biology. IEEE Computer Graphics and
Applications, 34(6):69–73, 2014.

[189] L. Kettner, J. Rossignac, and J. Snoeyink. The safari interface for
visualizing time-dependent volume data using iso-surfaces and
contour spectra. Computational Geometry, 25(1-2):97–116, 2003.

[190] R. M. Kirby, H. Marmanis, and D. H. Laidlaw. Visualizing mul-
tivalued data from 2D incompressible flows using concepts from
painting. In Proceedings Visualization’99 (Cat. No. 99CB37067), pages
333–540. IEEE, 1999.

[191] G. W. Klau, K. Klein, and P. Mutzel. An experimental compari-
son of orthogonal compaction algorithms. In Graph Drawing: 8th
International Symposium, GD 2000 Colonial Williamsburg, VA, USA,
September 20–23, 2000 Proceedings 8, pages 37–51. Springer, 2001.

[192] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and Jupyter development team.
Jupyter notebooks - a publishing format for reproducible compu-
tational workflows. In F. Loizides and B. Scmidt, editors, Position-
ing and Power in Academic Publishing: Players, Agents and Agendas,
pages 87–90, Netherlands, 2016. IOS Press.

bibliography 283

[193] S. G. Kobourov, S. Pupyrev, and P. Simonetto. Visualizing graphs
as maps with contiguous regions. In EuroVis (Short Papers), 2014.

[194] W. Köpp and T. Weinkauf. Temporal merge tree maps: A topology-
based static visualization for temporal scalar data. IEEE Transac-
tions on Visualization and Computer Graphics, 29(1):1157–1167, 2022.

[195] P. Köthur, C. Witt, M. Sips, N. Marwan, S. Schinkel, and D. Dran-
sch. Visual analytics for correlation-based comparison of time se-
ries ensembles. In Computer Graphics Forum, volume 34, pages 411–
420. Wiley Online Library, 2015.

[196] M. Kraus. Visualization of uncertain contour trees. In IMAGAP-
P/IVAPP, pages 132–139, 2010.

[197] A. Kumpf, M. Rautenhaus, M. Riemer, and R. Westermann. Vi-
sual analysis of the temporal evolution of ensemble forecast sen-
sitivities. IEEE Transactions on Visualization and Computer Graphics,
25(1):98–108, 2018.

[198] A. Kumpf, J. Stumpfegger, P. F. Hartl, and R. Westermann. Vi-
sual analysis of multi-parameter distributions across ensembles of
3D fields. IEEE Transactions on Visualization and Computer Graphics,
2021.

[199] A. Kumpf, J. Stumpfegger, and R. Westermann. Cluster-based anal-
ysis of multi-parameter distributions in cloud simulation ensem-
bles. In VMV, pages 73–80, 2019.

[200] A. Kumpf, B. Tost, M. Baumgart, M. Riemer, R. Westermann, and
M. Rautenhaus. Visualizing confidence in cluster-based ensemble
weather forecast analyses. IEEE Transactions on Visualization and
Computer Graphics, 24(1):109–119, 2017.

[201] P. Köthur, M. Sips, H. Dobslaw, and D. Dransch. Visual analytics
for comparison of ocean model output with reference data: De-
tecting and analyzing geophysical processes using clustering en-
sembles. IEEE Transactions on Visualization and Computer Graphics,
20(12):1893–1902, 2014.

[202] M. Latif and N. S. Keenlyside. El Niño/Southern Oscillation re-
sponse to global warming. Proceedings of the National Academy of
Sciences, 106(49):20578–20583, 2009.

284 bibliography

[203] S. Leistikow, K. Huesmann, A. Fofonov, and L. Linsen. Aggregated
ensemble views for deep water asteroid impact simulations. IEEE
Computer Graphics and Applications, 40(1):72–81, 2019.

[204] S. Leistikow, A. Nahardani, V. Hoerr, and L. Linsen. Interactive
visual similarity analysis of measured and simulated multi-field
tubular flow ensembles. In VCBM, pages 139–150, 2020.

[205] A. Lhuillier, C. Hurter, and A. Telea. State of the art in edge and
trail bundling techniques. In Computer Graphics Forum, volume 36,
pages 619–645. Wiley Online Library, 2017.

[206] A. E. Lie, J. Kehrer, and H. Hauser. Critical design and realization
aspects of glyph-based 3D data visualization. In Proceedings of the
25th Spring Conference on Computer Graphics, pages 19–26, 2009.

[207] T. Liebmann, G. H. Weber, and G. Scheuermann. Hierarchical cor-
relation clustering in multiple 2D scalar fields. In Computer Graph-
ics Forum, volume 37, pages 1–12. Wiley Online Library, 2018.

[208] M. Lighthill. On the squirming motion of nearly spherical de-
formable bodies through liquids at very small reynolds numbers.
Communications on pure and applied mathematics, 5(2):109–118, 1952.

[209] A. Ligmann-Zielinska and P. Jankowski. Spatially-explicit inte-
grated uncertainty and sensitivity analysis of criteria weights in
multicriteria land suitability evaluation. Environmental Modelling
& Software, 57:235–247, 2014.

[210] L. Liu, A. P. Boone, I. T. Ruginski, L. Padilla, M. Hegarty, S. H.
Creem-Regehr, W. B. Thompson, C. Yuksel, and D. H. House. Un-
certainty visualization by representative sampling from prediction
ensembles. IEEE Transactions on Visualization and Computer Graph-
ics, 23(9):2165–2178, 2016.

[211] R. Liu, H. Guo, and X. Yuan. A bottom-up scheme for user-defined
feature comparison in ensemble data. In SIGGRAPH Asia 2015
Visualization in High Performance Computing, SA ’15, New York, NY,
USA, 2015. Association for Computing Machinery.

[212] R. Liu, H. Guo, and X. Yuan. User-defined feature comparison for
vector field ensembles. Journal of Visualization, 20(2):217–229, 2017.

[213] S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information vi-
sualization: Recent advances and challenges. The Visual Computer,
30(12):1373–1393, 2014.

bibliography 285

[214] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci. Visu-
alizing high-dimensional data: Advances in the past decade. IEEE
Transactions on Visualization and Computer Graphics, 23(3):1249–1268,
2015.

[215] A.-P. Lohfink, F. Gartzky, F. Wetzels, L. Vollmer, and C. Garth.
Time-varying fuzzy contour trees. In 2021 IEEE Visualization Con-
ference (VIS), pages 86–90. IEEE, 2021.

[216] A.-P. Lohfink, F. Wetzels, J. Lukasczyk, G. H. Weber, and C. Garth.
Fuzzy contour trees: Alignment and joint layout of multiple con-
tour trees. Computer Graphics Forum, 2020.

[217] T. V. Long and L. Linsen. MultiClusterTree: Interactive visual ex-
ploration of hierarchical clusters in multidimensional multivariate
data. Computer Graphics Forum, 28(3):823–830, 2009.

[218] S. López-Pintado and J. Romo. On the concept of depth for
functional data. Journal of the American Statistical Association,
104(486):718–734, 2009.

[219] A. Love, A. Pang, and D. Kao. Visualizing spatial multivalue data.
IEEE Computer Graphics and Applications, 25(3):69–79, 2005.

[220] M. Luboschik, M. Röhlig, A. T. Bittig, N. Andrienko, H. Schu-
mann, and C. Tominski. Feature-driven visual analytics of
chaotic parameter-dependent movement. Computer Graphics Fo-
rum, 34(3):421–430, 2015.

[221] M. Luboschik, S. Rybacki, F. Haack, and H.-J. Schulz. Supporting
the integrated visual analysis of input parameters and simulation
trajectories. Computers & Graphics, 39:37–47, 2014.

[222] B. Ma and A. Entezari. An interactive framework for visualization
of weather forecast ensembles. IEEE Transactions on Visualization
and Computer Graphics, 25(1):1091–1101, 2019.

[223] N. Maher, S. Milinski, L. Suarez-Gutierrez, M. Botzet, M. Do-
brynin, L. Kornblueh, J. Kröger, Y. Takano, R. Ghosh, and C. Hede-
mann. The Max Planck Institute Grand Ensemble: Enabling the
exploration of climate system variability. Journal of Advances in
Modeling Earth Systems, 11(7):2050–2069, 2019.

[224] K. Matkovic, D. Gracanin, M. Jelovic, and H. Hauser. Interactive
visual steering-rapid visual prototyping of a common rail injection

286 bibliography

system. IEEE Transactions on Visualization and Computer Graphics,
14(6):1699–1706, 2008.

[225] K. Matkovic, D. Gracanin, B. Klarin, and H. Hauser. Interactive
visual analysis of complex scientific data as families of data sur-
faces. IEEE Transactions on Visualization and Computer Graphics,
15(6):1351–1358, 2009.

[226] K. Matkovic, D. Gracanin, R. Splechtna, M. Jelovic, B. Stehno,
H. Hauser, and W. Purgathofer. Visual analytics for complex en-
gineering systems: Hybrid visual steering of simulation ensem-
bles. IEEE Transactions on Visualization and Computer Graphics,
20(12):1803–1812, 2014.

[227] F. McGee, M. Ghoniem, G. Melançon, B. Otjacques, and B. Pin-
aud. The state of the art in multilayer network visualization. In
Computer Graphics Forum, volume 38, pages 125–149. Wiley Online
Library, 2019.

[228] L. McInnes, J. Healy, N. Saul, and L. Großberger. UMAP: Uniform
manifold approximation and projection. Journal of Open Source Soft-
ware, 3(29):861, 2018.

[229] W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer.
Kelpfusion: A hybrid set visualization technique. IEEE Transactions
on Visualization and Computer Graphics, 19(11):1846–1858, 2013.

[230] M. Meyer, M. Sedlmair, P. S. Quinan, and T. Munzner. The nested
blocks and guidelines model. Information Visualization, 14(3):234–
249, 2015.

[231] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs.
Voreen: A rapid-prototyping environment for ray-casting-based
volume visualizations. IEEE Computer Graphics and Applications,
29(6):6–13, 2009.

[232] M. Mihai and R. Westermann. Visualizing the stability of critical
points in uncertain scalar fields. Computers & Graphics, 41:13–25,
2014.

[233] V. Molchanov, A. Fofonov, and L. Linsen. Continuous represen-
tation of projected attribute spaces of multifields over any spatial
sampling. In Computer Graphics Forum, volume 32, pages 301–310.
Wiley Online Library, 2013.

bibliography 287

[234] M. D. Morris. Factorial sampling plans for preliminary computa-
tional experiments. Technometrics, 33(2):161–174, 1991.

[235] T. Munzner. Process and pitfalls in writing information visualiza-
tion research papers. In Information Visualization, pages 134–153.
Springer, 2008.

[236] T. Munzner. A nested model for visualization design and vali-
dation. IEEE Transactions on Visualization and Computer Graphics,
15(6):921–928, 2009.

[237] T. Munzner. Visualization analysis and design. CRC press, 2014.

[238] L. Najman, J. Cousty, and B. Perret. Playing with Kruskal: Algo-
rithms for morphological trees in edge-weighted graphs. In Inter-
national Symposium on Mathematical Morphology and Its Applications
to Signal and Image Processing, pages 135–146. Springer, 2013.

[239] National Research Council. Assessing the reliability of complex mod-
els: mathematical and statistical foundations of verification, validation,
and uncertainty quantification. National Academies Press, 2012.

[240] C. Neuhauser, M. Hieronymus, M. Kern, M. Rautenhaus, A. Oer-
tel, and R. Westermann. Visual analysis of model parameter sen-
sitivities along warm conveyor belt trajectories using met. 3d (1.6.
0-multivar0). Geoscientific Model Development Discussions, 2023:1–
34, 2023.

[241] B. D. Q. Nguyen, R. Hewett, and T. Dang. Visual features for multi-
variate time series. In Proceedings of the 11th International Conference
on Advances in Information Technology, pages 1–8, 2020.

[242] T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz,
and C. Tominski. Visual analytics of climate networks. Nonlinear
Processes in Geophysics, 22(5):545, 2015.

[243] T. Nocke, M. Flechsig, and U. Bohm. Visual exploration and evalu-
ation of climate-related simulation data. In 2007 Winter Simulation
Conference, pages 703–711. IEEE, 2007.

[244] T. Nocke, H. Schumann, and U. Böhm. Methods for the visualiza-
tion of clustered climate data. Computational Statistics, 19(1):75–94,
2004.

[245] M. Novotny and H. Hauser. Outlier-preserving focus+ context
visualization in parallel coordinates. IEEE Transactions on Visual-
ization and Computer Graphics, 12(5):893–900, 2006.

288 bibliography

[246] S. Nusrat and S. Kobourov. The state of the art in cartograms. In
Computer Graphics Forum, volume 35, pages 619–642. Wiley Online
Library, 2016.

[247] H. Obermaier, K. Bensema, and K. I. Joy. Visual trends analysis
in time-varying ensembles. IEEE Transactions on Visualization and
Computer Graphics, 22(10):2331–2342, 2015.

[248] H. Obermaier and K. I. Joy. Future challenges for ensemble visual-
ization. IEEE Computer Graphics and Applications, 34(3):8–11, 2014.

[249] Observable. Explore, analyze, and explain data. As a team. https:
//observablehq.com/. [Online; accessed 9-March-2022].

[250] P. Oesterling, C. Heine, H. Jänicke, and G. Scheuermann. Visual
analysis of high dimensional point clouds using topological land-
scapes. In 2010 IEEE Pacific Visualization Symposium (PacificVis),
pages 113–120, 2010.

[251] P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, and G. Heyer.
Visualization of high-dimensional point clouds using their density
distribution’s topology. IEEE Transactions on Visualization and Com-
puter Graphics, 17(11):1547–1559, 2011.

[252] P. Oesterling, C. Heine, G. H. Weber, D. Morozov, and G. Scheuer-
mann. Computing and visualizing time-varying merge trees for
high-dimensional data. In Topological Methods in Data Analysis and
Visualization, pages 87–101. Springer, 2017.

[253] D. Orban, D. F. Keefe, A. Biswas, J. Ahrens, and D. Rogers. Drag
and track: A direct manipulation interface for contextualizing data
instances within a continuous parameter space. IEEE Transactions
on Visualization and Computer Graphics, 25(1):256–266, 2019.

[254] A. T. Pang, C. M. Wittenbrink, and S. K. Lodha. Approaches to
uncertainty visualization. The Visual Computer, 13(8):370–390, 1997.

[255] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-
resolution computation and presentation of contour trees. In Proc.
IASTED Conference on Visualization, Imaging, and Image Processing,
pages 452–290. Citeseer, 2004.

[256] G. Peano. Sur une courbe, qui remplit toute une aire plane. Math-
ematische Annalen, 36(1):157–160, 1890.

https://observablehq.com/
https://observablehq.com/

bibliography 289

[257] B. Perret, G. Chierchia, J. Cousty, S. J. F. Guimaraes, Y. Kenmochi,
and L. Najman. Higra: Hierarchical graph analysis. SoftwareX,
10:1–6, 2019.

[258] T. Pfaffelmoser, M. Mihai, and R. Westermann. Visualizing the
variability of gradients in uncertain 2D scalar fields. IEEE Transac-
tions on Visualization and Computer Graphics, 19(11):1948–1961, 2013.

[259] T. Pfaffelmoser, M. Reitinger, and R. Westermann. Visualizing the
positional and geometrical variability of isosurfaces in uncertain
scalar fields. In Computer Graphics Forum, volume 30, pages 951–
960. Wiley Online Library, 2011.

[260] T. Pfaffelmoser and R. Westermann. Visualization of global corre-
lation structures in uncertain 2D scalar fields. In Computer Graphics
Forum, volume 31, pages 1025–1034. Wiley Online Library, 2012.

[261] T. Pfaffelmoser and R. Westermann. Correlation visualization for
structural uncertainty analysis. International Journal for Uncertainty
Quantification, 3(2), 2013.

[262] T. Pfaffelmoser and R. Westermann. Visualizing contour distribu-
tions in 2D ensemble data. In EuroVis (Short Papers), 2013.

[263] M. N. Phadke, L. Pinto, O. Alabi, J. Harter, R. M. Taylor II, X. Wu,
H. Petersen, S. A. Bass, and C. G. Healey. Exploring ensemble
visualization. In Visualization and Data Analysis 2012, volume 8294,
page 82940B. International Society for Optics and Photonics, 2012.

[264] F. Pianosi, K. Beven, J. Freer, J. W. Hall, J. Rougier, D. B. Stephen-
son, and T. Wagener. Sensitivity analysis of environmental models:
A systematic review with practical workflow. Environmental Mod-
elling & Software, 79:214–232, 2016.

[265] N. Piccolotto, M. Bögl, and S. Miksch. Visual parameter space
exploration in time and space. Computer Graphics Forum, 2023.

[266] H. Piringer, W. Berger, and J. Krasser. HyperMoVal: Interactive vi-
sual validation of regression models for real-time simulation. Com-
puter Graphics Forum, 29(3):983–992, 2010.

[267] H. Piringer, S. Pajer, W. Berger, and H. Teichmann. Comparative
visual analysis of 2D function ensembles. Computer Graphics Forum,
31(3pt3):1195–1204, 2012.

290 bibliography

[268] J. Platt. FastMap, MetricMap, and Landmark MDS are all Nystrom
algorithms. In AISTATS, 2005.

[269] Plotly Technologies Inc. Collaborative data science, 2015. https:

//plot.ly.

[270] J. Poco, A. Dasgupta, Y. Wei, W. Hargrove, C. Schwalm, R. Cook,
E. Bertini, and C. Silva. Similarityexplorer: A visual inter-
comparison tool for multifaceted climate data. In Computer Graph-
ics Forum, volume 33, pages 341–350. Wiley Online Library, 2014.

[271] M. Pont, J. Vidal, J. Delon, and J. Tierny. Wasserstein distances,
geodesics and barycenters of merge trees. IEEE Transactions on
Visualization and Computer Graphics, 28(1):291–301, 2021.

[272] M. Pont, J. Vidal, and J. Tierny. Principal geodesic analysis of
merge trees (and persistence diagrams). IEEE Transactions on Visu-
alization and Computer Graphics, 2022.

[273] K. Pothkow and H.-C. Hege. Positional uncertainty of isocontours:
Condition analysis and probabilistic measures. IEEE Transactions
on Visualization and Computer Graphics, 17(10):1393–1406, 2010.

[274] K. Pöthkow and H.-C. Hege. Nonparametric models for uncer-
tainty visualization. In Computer Graphics Forum, volume 32, pages
131–140. Wiley Online Library, 2013.

[275] K. Potter, J. Kniss, R. Riesenfeld, and C. R. Johnson. Visualizing
summary statistics and uncertainty. In Computer Graphics Forum,
volume 29, pages 823–832. Wiley Online Library, 2010.

[276] K. Potter, P. Rosen, and C. R. Johnson. From quantification to
visualization: A taxonomy of uncertainty visualization approaches.
In IFIP Working Conference on Uncertainty Quantification, pages 226–
249. Springer, 2011.

[277] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux,
V. Pascucci, and C. R. Johnson. Ensemble-vis: A framework for
the statistical visualization of ensemble data. In 2009 IEEE Inter-
national Conference on Data Mining Workshops, pages 233–240. IEEE,
2009.

[278] B. Preim and D. Bartz. Visualization in medicine: theory, algorithms,
and applications. Elsevier, 2007.

https://plot.ly
https://plot.ly

bibliography 291

[279] F. Raith, G. Scheuermann, and C. Gillmann. Uncertainty-aware
Detection and Visualization of Ocean Eddies in Ensemble Flow
Fields - A Case Study of the Red Sea. In S. Dutta, K. Feige, K. Rink,
and D. Zeckzer, editors, Workshop on Visualisation in Environmental
Sciences (EnvirVis). The Eurographics Association, 2021.

[280] R. Rao and S. K. Card. The table lens: merging graphical and sym-
bolic representations in an interactive focus+ context visualization
for tabular information. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 318–322, 1994.

[281] M. Rautenhaus, M. Böttinger, S. Siemen, R. Hoffman, R. M. Kirby,
M. Mirzargar, N. Röber, and R. Westermann. Visualization in
meteorology—a survey of techniques and tools for data analy-
sis tasks. IEEE Transactions on Visualization and Computer Graphics,
24(12):3268–3296, 2018.

[282] G. Reeb. Sur les points singuliers d’une forme de pfaff complete-
ment integrable ou d’une fonction numerique [On the singular
points of a completely integrable pfaff form or of a numerical func-
tion]. Comptes Rendus Acad. Sciences Paris, 222:847–849, 1946.

[283] H. Reijner. The development of the horizon graph. In Proc. Vis08
Workshop From Theory to Practice: Design, Vision and Visualization,
volume 3, 2008.

[284] J. Ren, J. Schneider, M. Ovsjanikov, and P. Wonka. Joint graph lay-
outs for visualizing collections of segmented meshes. IEEE Transac-
tions on Visualization and Computer Graphics, 24(9):2546–2558, 2017.

[285] G. Ristovski, N. Garbers, H. K. Hahn, T. Preusser, and L. Linsen.
Uncertainty-aware visual analysis of radiofrequency ablation sim-
ulations. Computers & Graphics, 79:24–35, 2019.

[286] G. Ristovski, T. Preusser, H. K. Hahn, and L. Linsen. Uncertainty in
medical visualization: Towards a taxonomy. Computers & Graphics,
39:60–73, 2014.

[287] J. C. Roberts. State of the art: Coordinated & multiple views in
exploratory visualization. In Fifth international conference on coor-
dinated and multiple views in exploratory visualization (CMV 2007),
pages 61–71. IEEE, 2007.

[288] R. C. Roberts, R. S. Laramee, G. A. Smith, P. Brookes, and
T. D’Cruze. Smart brushing for parallel coordinates. IEEE Transac-
tions on Visualization and Computer Graphics, 25(3):1575–1590, 2018.

292 bibliography

[289] T. Ropinski and B. Preim. Taxonomy and usage guidelines for
glyph-based medical visualization. In SimVis, volume 522, pages
121–138, 2008.

[290] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326, 2000.

[291] D. Sacha, L. Zhang, M. Sedlmair, J. A. Lee, J. Peltonen, D. Weiskopf,
S. C. North, and D. A. Keim. Visual interaction with dimension-
ality reduction: A structured literature analysis. IEEE Transactions
on Visualization and Computer Graphics, 23(1):241–250, 2017.

[292] S. Sagiroglu and D. Sinanc. Big data: A review. In 2013 international
conference on collaboration technologies and systems (CTS), pages 42–
47. IEEE, 2013.

[293] H. Saikia, H.-P. Seidel, and T. Weinkauf. Extended branch decom-
position graphs: Structural comparison of scalar data. In Computer
Graphics Forum, volume 33, pages 41–50. Wiley Online Library,
2014.

[294] E. Sakhaee and A. Entezari. A statistical direct volume rendering
framework for visualization of uncertain data. IEEE Transactions
on Visualization and Computer Graphics, 23(12):2509–2520, 2016.

[295] S. Şalap-Ayça, P. Jankowski, K. C. Clarke, and A. Nara. Is less
more? Experimenting with visual stacking of coincident maps for
spatial global sensitivity analysis in urban land-use change mod-
eling. Environmental Modelling & Software, 145:105181, 2021.

[296] P. Salembier and L. Garrido. Binary partition tree as an efficient
representation for image processing, segmentation, and informa-
tion retrieval. IEEE Transactions on Image Processing, 9(4):561–576,
2000.

[297] A. Saltelli. Making best use of model evaluations to compute sen-
sitivity indices. Computer physics communications, 145(2):280–297,
2002.

[298] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana, and S. Tarantola. Global sensitivity analysis:
the primer. John Wiley & Sons, 2008.

[299] A. Saltelli, S. Tarantola, and K.-S. Chan. A quantitative model-
independent method for global sensitivity analysis of model out-
put. Technometrics, 41(1):39–56, 1999.

bibliography 293

[300] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moor-
head. Noodles: A tool for visualization of numerical weather
model ensemble uncertainty. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1421–1430, 2010.

[301] N. Sauber, H. Theisel, and H.-P. Seidel. Multifield-graphs: An ap-
proach to visualizing correlations in multifield scalar data. IEEE
Transactions on Visualization and Computer Graphics, 12(5):917–924,
2006.

[302] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural computation,
10(5):1299–1319, 1998.

[303] W. Schroeder, K. M. Martin, and W. E. Lorensen. The visualization
toolkit an object-oriented approach to 3D graphics. Prentice-Hall, Inc.,
1998.

[304] H.-J. Schulz and H. Schumann. Visualizing graphs-a generalized
view. In Tenth International Conference on Information Visualisation
(IV’06), pages 166–173. IEEE, 2006.

[305] M. Schwarzl, L. Autin, G. Johnson, T. Torsney-Weir, and T. Möller.
Cellpackexplorer: Interactive model building for volumetric data
of complex cells. Computers & Graphics: X, 2:100010, 2019.

[306] M. W. Scroggs, I. A. Baratta, C. N. Richardson, and G. N. Wells.
Basix: a runtime finite element basis evaluation library. Journal of
Open Source Software, 7(73):3982, 2022.

[307] M. W. Scroggs, J. S. Dokken, C. N. Richardson, and G. N. Wells.
Construction of arbitrary order finite element degree-of-freedom
maps on polygonal and polyhedral cell meshes. ACM Transactions
on Mathematical Software, 48(2):18:1–18:23, 2022.

[308] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller.
Visual parameter space analysis: A conceptual framework. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2161–
2170, 2014.

[309] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodol-
ogy: Reflections from the trenches and the stacks. IEEE Transactions
on Visualization and Computer Graphics, 18(12):2431–2440, 2012.

294 bibliography

[310] T. W. Sheu, C. Chou, S. Tsai, and P. Liang. Three-dimensional
analysis for radio-frequency ablation of liver tumor with blood
perfusion effect. Computer methods in biomechanics and biomedical
engineering, 8(4):229–240, 2005.

[311] N. Shi, J. Xu, H. Li, H. Guo, J. Woodring, and H.-W. Shen. Vdl-
surrogate: A view-dependent latent-based model for parameter
space exploration of ensemble simulations. IEEE Transactions on
Visualization and Computer Graphics, 2022.

[312] B. Shneiderman. Tree visualization with tree-maps: 2-d space-
filling approach. ACM Transactions on graphics (TOG), 11(1):92–99,
1992.

[313] B. Shneiderman. The eyes have it: A task by data type taxonomy
for information visualizations. In Proceedings of IEEE Symposium
on Visual Languages, pages 336–343. IEEE, 1996.

[314] Q. Shu, H. Guo, J. Liang, L. Che, J. Liu, and X. Yuan. Ensemble-
graph: Interactive visual analysis of spatiotemporal behaviors in
ensemble simulation data. In 2016 IEEE Pacific Visualization Sympo-
sium (PacificVis), pages 56–63. IEEE, 2016.

[315] S. Sidwall Thygesen, T. B. Masood, M. Linares, V. Natarajan, and
I. Hotz. Level of detail exploration of electronic transition ensem-
bles using hierarchical clustering. Computer Graphics Forum, 2022.

[316] V. Silva and J. Tenenbaum. Global versus local methods in non-
linear dimensionality reduction. Advances in neural information pro-
cessing systems, 15, 2002.

[317] I. Sobel and G. Feldman. A 3x3 isotropic gradient operator for
image processing. A talk at the Stanford Artificial Project, pages 271–
272, 1968.

[318] I. M. Sobol. Global sensitivity indices for nonlinear mathematical
models and their monte carlo estimates. Mathematics and computers
in simulation, 55(1-3):271–280, 2001.

[319] B.-S. Sohn and C. Bajaj. Time-varying contour topology. IEEE
Transactions on Visualization and Computer Graphics, 12(1):14–25,
2005.

[320] B. Spence, L. Tweedie, H. Dawkes, and H. Su. Visualization for
functional design. In Proceedings of the 1995 IEEE Symposium on In-
formation Visualization, INFOVIS ’95, pages 4–10, Washington, DC,
USA, 1995. IEEE Computer Society.

bibliography 295

[321] R. Splechtna, K. Matkovic, D. Gracanin, M. Jelovic, and H. Hauser.
Interactive visual steering of hierarchical simulation ensembles.
In 2015 IEEE Conference on Visual Analytics Science and Technology
(VAST). IEEE, 2015.

[322] R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and
V. Natarajan. Edit distance between merge trees. IEEE Transactions
on Visualization and Computer Graphics, 26(3):1518–1531, 2018.

[323] L. Stopar, P. Skraba, M. Grobelnik, and D. Mladenic. Streamstory:
Exploring multivariate time series on multiple scales. IEEE Transac-
tions on Visualization and Computer Graphics, 25(4):1788–1802, 2018.

[324] J. Stumpfegger, K. Höhlein, G. Craig, and R. Westermann. GPU ac-
celerated scalable parallel coordinates plots. Computers & Graphics,
109:111–120, 2022.

[325] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual under-
standing of hierarchical system structures. IEEE Transactions on
Systems, Man, and Cybernetics, 11(2):109–125, 1981.

[326] J. Sukharev, C. Wang, K.-L. Ma, and A. T. Wittenberg. Correlation
study of time-varying multivariate climate data sets. In 2009 IEEE
Pacific Visualization Symposium, pages 161–168. IEEE, 2009.

[327] J. Sun, C. Wu, Y. Ge, Y. Li, and H. Yu. Spatial-temporal scientific
data clustering via deep convolutional neural network. In 2019
IEEE International Conference on Big Data (Big Data), pages 3424–
3429. IEEE, 2019.

[328] Y. Sun and M. G. Genton. Functional boxplots. Journal of Computa-
tional and Graphical Statistics, 20(2):316–334, 2011.

[329] U. H. Syeda, P. Murali, L. Roe, B. Berkey, and M. A. Borkin. Design
study" lite" methodology: Expediting design studies and enabling
the synergy of visualization pedagogy and social good. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pages 1–13, 2020.

[330] A. Szymczak. Subdomain aware contour trees and contour evo-
lution in time-dependent scalar fields. In International Conference
on Shape Modeling and Applications 2005 (SMI’05), pages 136–144.
IEEE, 2005.

[331] R. Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.

296 bibliography

[332] R. Tamassia. Handbook of graph drawing and visualization. CRC press,
2013.

[333] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph draw-
ing and readability of diagrams. IEEE Transactions on Systems, Man,
and Cybernetics, 18(1):61–79, 1988.

[334] J. Tao, M. Imre, C. Wang, N. V. Chawla, H. Guo, G. Sever, and S. H.
Kim. Exploring time-varying multivariate volume data using ma-
trix of isosurface similarity maps. IEEE Transactions on Visualization
and Computer Graphics, 25(1):1236–1245, 2018.

[335] C. J. Taylor and D. J. Kriegman. Minimization on the Lie group
SO (3) and related manifolds. Yale University, Tech. Rep. 9405, 1994.

[336] A. C. Telea. Data visualization: principles and practice. CRC Press,
2014.

[337] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geo-
metric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[338] J. J. Thomas and K. A. Cook. A visual analytics agenda. IEEE
Computer Graphics and Applications, 26(1):10–13, 2006.

[339] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux.
The topology toolkit. IEEE Transactions on Visualization and Com-
puter Graphics, 24(1):832–842, 2018.

[340] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux.
The Topology ToolKit. IEEE Transactions on Visualization
and Computer Graphics (Proc. of IEEE VIS), 2017. https://

topology-tool-kit.github.io/.

[341] R. D. Torn and G. J. Hakim. Ensemble-based sensitivity analysis.
Monthly Weather Review, 136(2):663–677, 2008.

[342] T. Torsney-Weir, T. Möller, M. Sedlmair, and R. M. Kirby. Hyper-
sliceplorer: Interactive visualization of shapes in multiple dimen-
sions. Computer Graphics Forum, 37(3):229–240, 2018.

[343] T. Torsney-Weir, A. Saad, T. Möller, H. Hege, B. Weber, J. Verba-
vatz, and S. Bergner. Tuner: Principled parameter finding for im-
age segmentation algorithms using visual response surface explo-
ration. IEEE Transactions on Visualization and Computer Graphics,
17(12):1892–1901, 2011.

https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/

bibliography 297

[344] M. Tory and T. Möller. Human factors in visualization research.
IEEE Transactions on Visualization and Computer Graphics, 10(1):72–
84, 2004.

[345] A. Tyagi, Z. Cao, T. Estro, E. Zadok, and K. Mueller. ICE: An in-
teractive configuration explorer for high dimensional categorical
parameter spaces. In 2019 IEEE Conference on Visual Analytics Sci-
ence and Technology (VAST), pages 23–34. IEEE, 2019.

[346] A. Unger, S. Schulte, V. Klemann, and D. Dransch. A visual
analysis concept for the validation of geoscientific simulation
models. IEEE Transactions on Visualization and Computer Graphics,
18(12):2216–2225, 2012.

[347] A. Unger and H. Schumann. Visual support for the understanding
of simulation processes. In 2009 IEEE Pacific Visualization Sympo-
sium, pages 57–64. IEEE, 2009.

[348] L. van der Maaten and G. Hinton. Visualizing high-dimensional
data using t-SNE. Journal of Machine Learning Research, 9:2579–2605,
2008.

[349] L. van der Maaten, E. O. Postma, and H. J. van den Herik. Di-
mensionality reduction: A comparative review. Journal of Machine
Learning Research, 10(66-71):13, 2009.

[350] S. van der Walt and N. Smith. Matplotlib colormaps. https://

bids.github.io/colormap/. [Online; accessed 9-March-2022].

[351] M. Van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. Schikore. Contour trees and small seed sets for isosurface
traversal. In Proceedings of the thirteenth annual symposium on Com-
putational geometry, pages 212–220, 1997.

[352] J. J. Van Wijk and H. Van de Wetering. Cushion treemaps: Visual-
ization of hierarchical information. In Proceedings 1999 IEEE Sym-
posium on Information Visualization (InfoVis’ 99), pages 73–78. IEEE,
1999.

[353] J. J. van Wijk and R. van Liere. Hyperslice. In Proceedings Visual-
ization’93, pages 119–125. IEEE, 1993.

[354] C. Vehlow, F. Beck, and D. Weiskopf. Visualizing group structures
in graphs: A survey. In Computer Graphics Forum, volume 36, pages
201–225. Wiley Online Library, 2017.

https://bids.github.io/colormap/
https://bids.github.io/colormap/

298 bibliography

[355] D. Vietinghoff, C. Heine, M. Böttinger, N. Maher, J. Jungclaus, and
G. Scheuermann. Visual analysis of spatio-temporal trends in time-
dependent ensemble data sets on the example of the North At-
lantic Oscillation. In 2021 IEEE 14th Pacific Visualization Symposium
(PacificVis), pages 71–80. IEEE, 2021.

[356] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cim-
rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Con-
tributors. SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods, 17:261–272, 2020.

[357] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J.
van Wijk, J.-D. Fekete, and D. W. Fellner. Visual analysis of large
graphs: State-of-the-art and future research challenges. In Com-
puter Graphics Forum, volume 30, pages 1719–1749. Wiley Online
Library, 2011.

[358] A. Völker. Optische Abfrage der Wellenpaketdynamik in niederdi-
mensionalen Halbleiterstrukturen: Eine theoretische Studie. Mas-
ter’s thesis, University of Münster, 2020.

[359] C. Wang and J. Han. DL4SciVis: A state-of-the-art survey on deep
learning for scientific visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2022.

[360] J. Wang, S. Hazarika, C. Li, and H.-W. Shen. Visualization and
visual analysis of ensemble data: A survey. IEEE Transactions on
Visualization and Computer Graphics, 25(9):2853–2872, 2019.

[361] J. Wang, X. Liu, H.-W. Shen, and G. Lin. Multi-resolution cli-
mate ensemble parameter analysis with nested parallel coordi-
nates plots. IEEE Transactions on Visualization and Computer Graph-
ics, 23(1):81–90, 2017.

[362] L. Wang, X. Tang, J. Zhang, and D. Guan. Correlation analysis for
exploring multivariate data sets. IEEE Access, 6:44235–44243, 2018.

[363] M. O. Ward. XmdvTool: Integrating multiple methods for visual-
izing multivariate data. In Proceedings Visualization’94, pages 326–
333. IEEE, 1994.

bibliography 299

[364] M. O. Ward and J. Yang. Interaction spaces in data and information
visualization. In VisSym, pages 137–145, 2004.

[365] J. H. Ward Jr. Hierarchical grouping to optimize an objective func-
tion. Journal of the American Statistical association, 58(301):236–244,
1963.

[366] G. Weber, P.-T. Bremer, M. Day, J. Bell, and V. Pascucci. Feature
tracking using reeb graphs. In Topological Methods in Data Analysis
and Visualization, pages 241–253. Springer, 2011.

[367] G. Weber, P.-T. Bremer, and V. Pascucci. Topological landscapes: A
terrain metaphor for scientific data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 13(6):1416–1423, 2007.

[368] G. H. Weber, P.-T. Bremer, and V. Pascucci. Topological cacti: Vi-
sualizing contour-based statistics. In Topological Methods in Data
Analysis and Visualization II, pages 63–76. Springer, 2012.

[369] D. Weiskopf. Uncertainty visualization: Concepts, methods, and
applications in biological data visualization. Frontiers in Bioinfor-
matics, page 10, 2022.

[370] J. Weissenböck, B. Fröhler, E. Gröller, J. Kastner, and C. Heinzl.
Dynamic volume lines: Visual comparison of 3D volumes through
space-filling curves. IEEE Transactions on Visualization and Computer
Graphics, 25(1):1040–1049, 2018.

[371] F. Wetzels and C. Garth. A deformation-based edit distance for
merge trees. In 2022 Topological Data Analysis and Visualization
(TopoInVis), pages 29–38. IEEE, 2022.

[372] F. Wetzels, H. Leitte, and C. Garth. Branch decomposition-
independent edit distances for merge trees. In Computer Graphics
Forum, volume 41, pages 367–378. Wiley Online Library, 2022.

[373] F. Wickelmaier. An introduction to MDS. Sound Quality Research
Unit, Aalborg University, Denmark, 46(5):1–26, 2003.

[374] A. T. Wilson and K. C. Potter. Toward visual analysis of ensemble
data sets. In Proceedings of the 2009 Workshop on Ultrascale Visualiza-
tion - UltraVis '09, pages 48–53. ACM, ACM Press, 2009.

[375] S. Wolfram. Cellular automata. Los Alamos Science, pages 09–01,
1983.

300 bibliography

[376] P. C. Wong, H. Foote, D. L. Kao, R. Leung, and J. Thomas. Mul-
tivariate visualization with data fusion. Information Visualization,
1(3-4):182–193, 2002.

[377] G. Woodin, B. Winter, and L. Padilla. Conceptual metaphor
and graphical convention influence the interpretation of line
graphs. IEEE Transactions on Visualization and Computer Graphics,
28(2):1209–1221, 2021.

[378] J. Woodring and H.-W. Shen. Chronovolumes: a direct rendering
technique for visualizing time-varying data. In Proceedings of the
2003 Eurographics/IEEE TVCG Workshop on Volume graphics, pages
27–34, 2003.

[379] J. Woodring and H.-W. Shen. Multi-variate, time varying, and com-
parative visualization with contextual cues. IEEE Transactions on
Visualization and Computer Graphics, 12(5):909–916, 2006.

[380] J. Woodring and H.-W. Shen. Multiscale time activity data ex-
ploration via temporal clustering visualization spreadsheet. IEEE
Transactions on Visualization and Computer Graphics, 15(1):123–137,
2008.

[381] F. Wu, G. Chen, J. Huang, Y. Tao, and W. Chen. EasyXplorer: A
flexible visual exploration approach for multivariate spatial data.
In Computer Graphics Forum, volume 34, pages 163–172. Wiley On-
line Library, 2015.

[382] H.-Y. Wu, M. Nollenburg, and I. Viola. Multi-level area balancing
of clustered graphs. IEEE Transactions on Visualization and Computer
Graphics, 2020.

[383] K. Wu and S. Zhang. A contour tree based visualization for ex-
ploring data with uncertainty. International Journal for Uncertainty
Quantification, 3(3), 2013.

[384] J. Wulms, J. Buchmüller, W. Meulemans, K. Verbeek, and B. Speck-
mann. Stable visual summaries for trajectory collections. In 2021
IEEE 14th Pacific Visualization Symposium (PacificVis), pages 61–70.
IEEE, 2021.

[385] J. Xia, Y. Zhang, J. Song, Y. Chen, Y. Wang, and S. Liu. Revisiting di-
mensionality reduction techniques for visual cluster analysis: An
empirical study. IEEE Transactions on Visualization and Computer
Graphics, 2021.

bibliography 301

[386] C. Xie, M. Li, H. Wang, and J. Dong. A survey on visual analysis
of ocean data. Visual Informatics, 2019.

[387] E. Xu and H. Zhang. Spatially-explicit sensitivity analysis for land
suitability evaluation. Applied Geography, 45:1–9, 2013.

[388] L. Yan, Y. Wang, E. Munch, E. Gasparovic, and B. Wang. A struc-
tural average of labeled merge trees for uncertainty visualization.
IEEE Transactions on Visualization and Computer Graphics, 26(1):832–
842, 2019.

[389] H. Yang, R. Ballester-Ripoll, and R. Pajarola. SenVis: Interactive
tensor-based sensitivity visualization. In Computer Graphics Forum,
volume 40, pages 275–286. Wiley Online Library, 2021.

[390] L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein. Spa-
tial resonances and superposition patterns in a reaction-diffusion
model with interacting Turing modes. Physical Review Letters,
88(20):208303, 2002.

[391] K.-H. Yeap and M. Sarrafzadeh. Floor-planning by graph dualiza-
tion: 2-concave rectilinear modules. SIAM Journal on Computing,
22(3):500–526, 1993.

[392] J. S. Yi, Y. ah Kang, and J. Stasko. Toward a deeper understanding
of the role of interaction in information visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 13(6):1224–1231, 2007.

[393] C. Yuan and H. Yang. Research on k-value selection method of
k-means clustering algorithm. J, 2(2):226–235, 2019.

[394] D. A. Zaitsev. A generalized neighborhood for cellular automata.
Theoretical Computer Science, 666:21–35, 2017.

[395] H. Zhang, Y. Hou, D. Qu, and Q. Liu. Correlation visualization of
time-varying patterns for multi-variable data. IEEE Access, 4:4669–
4677, 2016.

[396] M. Zhang, L. Chen, Q. Li, X. Yuan, and J. Yong. Uncertainty-
oriented ensemble data visualization and exploration using vari-
able spatial spreading. IEEE Transactions on Visualization and Com-
puter Graphics, 27(2):1808–1818, 2020.

[397] Y. Zhang, Y. Wang, and S. Parthasarathy. Visualizing attributed
graphs via terrain metaphor. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data

302 bibliography

Mining, KDD ’17, page 1325–1334, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[398] J. Zhao, F. Chevalier, E. Pietriga, and R. Balakrishnan. Exploratory
analysis of time-series with chronolenses. IEEE Transactions on Vi-
sualization and Computer Graphics, 17(12):2422–2431, 2011.

[399] L. Zhou, C. R. Johnson, and D. Weiskopf. Data-driven space-filling
curves. IEEE Transactions on Visualization and Computer Graphics,
27(2):1591–1600, 2020.

[400] L. Zhou and D. Weiskopf. Indexed-points parallel coordinates vi-
sualization of multivariate correlations. IEEE Transactions on Visu-
alization and Computer Graphics, 24(6):1997–2010, 2017.

[401] O. C. Zienkiewicz, R. L. Taylor, and P. Nithiarasu. The finite element
method for fluid dynamics. Butterworth-Heinemann, 2013.

L E B E N S L A U F

Marina Evers,
geboren am 08.07.1995 in Lingen (Ems)

Schulbildung

2002-2006 Joseph-Tiesmeyer-Schule Emsbüren (Grundschule)

2006-2014 Franziskusgymnasium Lingen

(Abitur 23.04.2014)

Studium

2014-2017 Bachelor of Science Physik, WWU Münster

(Abschluss 31.7.2017)

2014-2018 Bachelor of Science Informatik, WWU Münster

(Abschluss 26.07.2018)

2016-2017 Universidade de Lisboa, Portugal (Erasmus)

2017-2019 Master of Science Physik, WWU Münster

(Abschluss 13.06.2019)

2019-2023 Promotion Informatik, WWU Münster

Tätigkeiten

2017-2019 Studentische Hilfskraft, WWU Münster

2019-2023 Wissenschaftliche Mitarbeiterin, WWU Münster

Beginn der Dissertation

07/2019 Institut für Informatik, WWU Münster,

betreut durch Lars Linsen

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/

	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	Introduction
	1 Introduction
	1.1 Simulation Ensembles
	1.2 Ensemble Visualization
	1.3 Contributions

	2 Ensemble Visualization: State of the Art and Background
	2.1 Visualization and Visual Analytics
	2.2 Ensemble Visualization
	2.2.1 Parameter-Space Analysis
	2.2.2 Uncertainty Visualization
	2.2.3 Multi-field Visualization

	2.3 Common Techniques in Ensemble Visualization
	2.3.1 Dimensionality Reduction
	2.3.2 Multi-run Similarity Plot
	2.3.3 Parallel Coordinates Plot
	2.3.4 Scatterplot Matrix
	2.3.5 Functional Boxplots

	Parameter-Space Analysis
	3 Segmentation Embedding
	3.1 Related Work
	3.2 Fundamentals
	3.2.1 Orthogonal Graph Drawing
	3.2.2 Cellular Automata

	3.3 Visualization Tasks
	3.4 Overview
	3.5 Segmentation Embedding
	3.5.1 Graph Embedding
	3.5.2 Cellular Automaton
	3.5.3 Segmentation Visualization

	3.6 Algorithmic Evaluation
	3.6.1 Quality Criteria
	3.6.2 Results

	3.7 Embedding of 3D Segmentations
	3.8 Discussion

	4 Analysis of Partitionings
	4.1 Related Work
	4.2 Task Definition
	4.3 Overview
	4.3.1 Synthetic Dataset

	4.4 Similarity Space Analysis
	4.4.1 Clustering
	4.4.2 Cluster Analysis
	4.4.3 Similarity Embedding
	4.4.4 Temporal Evolution Plot

	4.5 Parameter-Space Visualizations
	4.5.1 Hyper-slicer
	4.5.2 Parameter-Space Embedding

	4.6 Comparison to Alternative Visual Encodings
	4.7 Analytical Workflow
	4.8 Case Studies
	4.8.1 Blood Flow
	4.8.2 Semiconductor Quantum Wire
	4.8.3 Active Crystal

	4.9 Discussion

	5 Interactive Definition of Characteristic Measures
	5.1 Related Work
	5.2 Requirement and Task Analysis
	5.3 Workflow
	5.4 Visual Analysis System
	5.4.1 Detail Visualizations
	5.4.2 Interactive Programming Interface
	5.4.3 Timeplot
	5.4.4 Heatmap

	5.5 Analyzing Active Crystal Dynamics
	5.6 Discussion

	6 Topological Analysis of Parameter Dependencies
	6.1 Related Work and Background
	6.1.1 Topological Landscapes
	6.1.2 Merge Tree Matching

	6.2 Overview
	6.3 Coherent Contour Trees
	6.3.1 Distance Metric
	6.3.2 Matching

	6.4 Coherent Visualization of Topological Landscapes
	6.4.1 Animation
	6.4.2 Static Visualization

	6.5 Results
	6.5.1 Synthetic Datasets
	6.5.2 Pattern Formation in 2D
	6.5.3 Cavity Flow in 3D

	6.6 Discussion

	7 Spatial Global Sensitivity Analysis
	7.1 Related Work and Background
	7.1.1 Global Sensitivity Measures
	7.1.2 Space-filling Curves
	7.1.3 Horizon Graphs

	7.2 Problem Specification
	7.3 Overview
	7.4 Visual Design
	7.4.1 Parallel Coordinates Plot
	7.4.2 Spatial Sensitivity Visualization
	7.4.3 Parameter Dependency Visualization

	7.5 Evaluation
	7.5.1 Datasets
	7.5.2 Comparison of Sensitivity Computation Methods
	7.5.3 Space-filling Curve

	7.6 Usage Scenarios
	7.6.1 Synthetic data
	7.6.2 Radiofrequency ablation data
	7.6.3 Aneurysm data

	7.7 Discussion

	Uncertainty-aware Analysis of Correlations
	8 Similarity Images
	8.1 Related Work
	8.1.1 Watershed Segmentation

	8.2 Problem Specification
	8.3 Similarity Image
	8.3.1 Time Series Ensemble Correlation
	8.3.2 3D Embedding
	8.3.3 Color Mapping

	8.4 Hierarchical Segmentation
	8.5 Results
	8.5.1 Synthetic Dataset
	8.5.2 Global Climate Simulation
	8.5.3 3D Blood Flow Ensemble

	8.6 Discussion

	9 Uncertainty-Aware Hierarchical Correlation Analysis
	9.1 Overview
	9.2 Multi-level Correlations
	9.3 Visual Design
	9.3.1 Region Visualization
	9.3.2 Correlation Heatmap
	9.3.3 Uncertainty-aware Time Series Visualization
	9.3.4 Coordinated Interactions

	9.4 Results
	9.4.1 Synthetic Dataset
	9.4.2 2D Climate Ensemble

	9.5 Discussion

	10 Interactive Correlation Analysis in Multi-field Climate Ensembles
	10.1 Workflow
	10.2 Preprocessing
	10.3 Visual Design
	10.3.1 UMAP Embedding
	10.3.2 Map View
	10.3.3 Heatmap
	10.3.4 Fourier Analysis

	10.4 Synthetic Dataset
	10.5 Climate Ensemble Analysis
	10.5.1 North-Atlantic Oscillation
	10.5.2 El Niño/Southern Oscillation
	10.5.3 Domain Expert Feedback

	10.6 Discussion and Conclusion

	Conclusion
	11 Conclusion and Future Work

	Appendix
	A Additional Results
	A.1 Comparison of LMDS and PMDS
	A.2 Similarity Images
	A.3 Evaluation of DGSA
	A.4 Evaluation of Space-filling Curves

	B Datasets
	B.1 Synthetic Dataset with 4D parameter space
	B.2 Reaction-Diffusion System
	B.3 Cavity Flow

	Bibliography
	Lebenslauf
	Colophon

